Skip to main content
Log in

The ant genomes have been invaded by several types of mariner transposable elements

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

To date, only three types of full-length mariner elements have been described in ants, each one in a different genus of the Myrmicinae subfamily: Sinvmar was isolated from various Solenopsis species, Myrmar from Myrmica ruginodis, and Mboumar from Messor bouvieri. In this study, we report the coexistence of three mariner elements (Tnigmar-Si, Tnigmar-Mr, and Tnigmar-Mb) in the genome of a single species, Tapinoma nigerrimum (subfamily Dolichoderinae). Molecular evolutionary analyses of the nucleotide sequence data revealed a general agreement between the evolutionary history of most the elements and the ant species that harbour them, and suggest that they are at the vertical inactivation stage of the so-called Mariner Life Cycle. In contrast, significantly reduced levels of synonymous divergence between Mboumar and Tnigmar-Mb and between Myrmar and Botmar (a mariner element isolated from Bombus terrestris), relative to those observed between their hosts, suggest that these elements arrived to the species that host them by horizontal transfer, long after the species’ split. The horizontal transfer events for the two pairs of elements could be roughly dated within the last 2 million years and about 14 million years, respectively. As would be expected under this scenario, the coding sequences of the youngest elements, Tnigmar-Mb and Mboumar, are intact and, thus, potentially functional. Each mariner element has a different chromosomal distribution pattern according to their stage within the Mariner Life Cycle. Finally, a new defective transposable element (Azteca) has also been found inserted into the Tnigmar-Mr sequences showing that the ant genomes have been invaded by at least four different types of mariner elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249–252

    Article  PubMed  CAS  Google Scholar 

  • Augé-Gouillou C, Brillet B, Germon S, Hamelin MH, Bigot Y (2005) Mariner Mos 1transposase dimerizes prior to ITR binding. J Mol Biol 351:117–130

    Article  PubMed  Google Scholar 

  • Barry EG, Witherspoon DJ, Lampe DJ (2004) A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 166:823–833

    Article  PubMed  CAS  Google Scholar 

  • Bartolomé C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    Article  PubMed  Google Scholar 

  • Bartolomé C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10:R22

    Article  PubMed  Google Scholar 

  • Bigot Y, Hamelin MH, Capy P, Periquet G (1994) Mariner-like elements in hymenopteran species, insertion site and distribution. Proc Natl Acad Sci USA 91:3408–3412

    Article  PubMed  CAS  Google Scholar 

  • Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 17:12

    Article  Google Scholar 

  • Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172–18177

    Article  PubMed  CAS  Google Scholar 

  • Brunet F, Giraud T, Godin F, Capy P (2002) Do deletions of Mos1-like elements occur randomly in the Drosophilidae family? J Mol Evol 54:227–234

    Article  PubMed  CAS  Google Scholar 

  • Bouuaert C, Chalmers R (2010) Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 38:190–202

    Article  Google Scholar 

  • Bui QT, Casse N, Leignel V, Nicolas V, Chénais B (2008) Widespread occurence of mariner transposons in coastal crabs. Mol Phylogenet Evol 47:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Jarne P, Assimacopoulos S (1994) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. Drosophila melanogaster: III. Genet Res 64:183–197

    Article  PubMed  CAS  Google Scholar 

  • De Menten L, Niculita H, Gilbert M, Delneste D, Aron S (2003) Fluorescence in situ hybridization: a new method for determining primary sex ratio in ants. Mol Ecol 12:1637–1648

    Article  PubMed  Google Scholar 

  • Diao Y, Qi Y, Ma Y, Xia A, Sharakhov I, Chen X, Biedler J, Ling E, Tu ZJ (2011) Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes. PLoS One 6:e16743

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Fontanillas P, Hartl DL, Reuter M (2007) Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. PLoS Genet 3:e210

    Article  PubMed  Google Scholar 

  • Haine ER, Kabat P, Cook JM (2007) Diverse mariner-like elements in fig wasps. Insect Mol Biol 16:743–752

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL (2001) Discovery of the transposable element mariner. Genetics 157:471–476

    PubMed  CAS  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358

    Article  PubMed  CAS  Google Scholar 

  • Heinze J, Gadau J, Hölldobler B, Nanda I, Schmid M, Scheller K (1994) Genetic variability in the ant Camponotus floridanus detected by multilocus fingerprinting. Naturwissenschaften 81:34–36

    CAS  Google Scholar 

  • Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P (2011) The struggle for life of the genome's selfish architects. Biol Direct 6:19

    Article  PubMed  Google Scholar 

  • Hurst GDD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Kumaresan GS, Mathavan S (2004) Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mol Biol 13:259–271

    Article  PubMed  CAS  Google Scholar 

  • Krieger MJB, Ross KG (2003) Molecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera, Formicidae). Insect Mol Biol 12:155–165

    Article  PubMed  CAS  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element Impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    Article  PubMed  CAS  Google Scholar 

  • Lampe DJ, Walden KKO, Robertson HM (2001) Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol 18:954–961

    Article  PubMed  CAS  Google Scholar 

  • Lampe DJ, Witherspoon DJ, Soto-Adames FN, Robertson HM (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20:554–562

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Leroy H, Castagnone-Sereno P, Renault S, Augé-Gouillou C, Bigot Y, Abad P (2003) Characterization of Mcmar1, a mariner-like element with large inverted terminal repeats (ITRs) from the phytoparasitic nematode Meloidogyne chitwoodi. Gene 304:35–41

    Article  PubMed  CAS  Google Scholar 

  • Li WS (1997) Molecular evolution. Chapters 7 and 8. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Lohe AR, De Aguiar D, Hartl DL (1997) Mutations in the mariner transposase, the “D, D(35)E” consensus sequence is nonfunctional. Proc Natl Acad Sci USA 94:1293–1297

    Article  PubMed  CAS  Google Scholar 

  • Loreto EL, Carareto CM, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100:545–554

    Article  PubMed  CAS  Google Scholar 

  • Lorite P, Aránega AE, Luque F, Palomeque T (1997) Analysis of the nucleolar organizing regions in the ant Tapinoma nigerrimum (Hymenoptera, Formicidae). Heredity 78:578–582

    Article  PubMed  CAS  Google Scholar 

  • Lorite P, Carrillo JA, Garneria I, Petitpierre E, Palomeque T (2002) Satellite DNA in the elm leaf beetle Xanthogaleruca luteola (Coleoptera, Chrysomelidae): characterization, interpopulation analysis and chromosome location. Cytogenet Genome Res 98:302–307

    Article  PubMed  CAS  Google Scholar 

  • Lorite P, Palomeque T (2010) Karyotype evolution in ants (Hymenoptera: Formicidae) with a review of the known ant chromosome numbers. Myrmecol News 13:89–102

    Google Scholar 

  • McClean P (1998). DNA — basics of structure and analysis. Nucleic acid hybridizations. Retrieved from http://www.ndsu.nodak.edu/instruct/mcclean/plsc731/dna/dna6.htm 12/7/2012

  • Miskey C, Izsvák Z, Kawakami K, Ivics Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641

    Article  PubMed  CAS  Google Scholar 

  • Meznar ER, Gadau J, Koeniger N, Rueppell OJ (2010) Comparative linkage mapping suggests a high recombination rate in all honeybees. J Hered 101(Suppl 1):S118–S126

    Article  PubMed  CAS  Google Scholar 

  • Medhora M, Maruyama K, Hartl DL (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128:311–318

    PubMed  CAS  Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of Angiosperms. Science 312:101–104

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-López M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) Transposition of Mboumar-9: identification of a new naturally-active mariner-family transposón. J Mol Biol 382:567–572

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ, Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolutionary and phylogenetics. Chapter 10. Oxford University Press, New York

    Google Scholar 

  • Niehuis O, Gibson JD, Rosenberg MS, Pannebakker BA, Koevoets T, Judson AK, Desjardins CA, Kennedy K, Duggan D, Beukeboom LW, van de Zande L, Shuker DM, Werren JH, Gadau J (2010) Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia. PLoS One 5:e8597

    Article  PubMed  Google Scholar 

  • Palomeque T, Chica E, Cano MA, Díaz de la Guardia R (1988) Karyotypes, C-banding, and chromosomal location of active nucleolar organizing regions in Tapinoma (Hymenoptera, Formicidae). Genome 30:277–280

    Article  PubMed  CAS  Google Scholar 

  • Palomeque T, Muñoz-López M, Carrillo JA, Lorite P (2005) Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae). Chromosome Res 13:795–807

    Article  PubMed  CAS  Google Scholar 

  • Palomeque T, Carrillo JA, Muñoz-López M, Lorite P (2006) Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. Gene 371:194–205

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RH, Izsvák Z, Ivics Z (1999) Resident aliens, the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332

    Article  PubMed  CAS  Google Scholar 

  • Rezende-Teixeira P, Lauand C, Siviero F, Machado-Santelli GM (2010) Normal and defective mariner-like elements in Rhynchosciara species (Sciaridae, Diptera). Genet Mol Res 9:849–857

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1996) Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol Gen Genet 252:761–766

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Asplund KL (1996) Bmmar1, a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26:945–954

    Article  PubMed  CAS  Google Scholar 

  • Rouleux-Bonnin F, Petit A, Demattei MV, Bigot Y (2005) Evolution of full-length and deleted forms of the mariner-like element, Botmar1, in the genome of the bumble bee, Bombus terrestris (Hymenoptera: Apidae). J Mol Evol 60:736–747

    Article  PubMed  CAS  Google Scholar 

  • Rouault JD, Casse N, Chénais B, Hua-Van A, Filée J, Capy P (2009) Automatic classification within families of transposable elements: application to the mariner family. Gene 448:227–232

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203

    Article  PubMed  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  • Sela N, Kim E, Ast G (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 11:R59

    Article  PubMed  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115

    PubMed  CAS  Google Scholar 

  • Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Mol Biol Evol 22:126–134

    Article  PubMed  CAS  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U (2006) Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol 7:R120

    Article  PubMed  Google Scholar 

  • Sirviö A, Gadau J, Rueppell O, Lamatsch D, Boomsma JJ, Pamilo P, Page RE Jr (2006) High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. J Evol Biol 19:1475–1485

    Article  PubMed  Google Scholar 

  • Sirviö A, Johnston JS, Wenseleers T, Pamilo P (2011) A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris. BMC Genet 12:95

    Article  PubMed  Google Scholar 

  • Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21:36–44

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol Biol Evol 28:2731–2739

    Google Scholar 

  • Viginier B, Peeters C, Brazier L, Doums C (2004) Very low genetic variability in the Indian queenless ant Diacamma indicum. Mol Ecol 13:2095–2100

    Article  PubMed  CAS  Google Scholar 

  • Ward PS, Downie DA (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst Entomol 30:310–335

    Article  Google Scholar 

  • Ward PS, Brady SG, Fisher BL, Schultz TR (2010) Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst Biol 59:342–362

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–197

    Article  PubMed  CAS  Google Scholar 

  • Wysocka A, Krzysztofiak L, Krzysztofiak A, Zołnierkiewicz O, Ojdowska E, Sell J (2011) Low genetic diversity in Polish populations of sibling ant species: Lasius niger (L.) and Lasius platythorax Seifert (Hymenoptera, Formicidae). Insec Soc 58:191–195

    Article  Google Scholar 

  • Zhou MB, Zhong H, Tang DQ (2011) Isolation and characterization of seventy-nine full-length mariner-like transposase genes in the Bambusoideae subfamily. J Plant Res 124:607–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dale K. Pollet (Louisiana State University Agricultural Center, Baton Rouge, LA, USA) for providing us samples of Solenopsis invicta. We are also grateful to Alain Lenoir (Université François Rabelais, Tours, France) for providing us samples of Myrmica ruginodis. This work was supported by the Spanish Junta de Andalucía (through the programs “Ayudas a Grupos de Investigación”, Group BIO220 and “Incentivos a proyectos de investigación de excelencia”, project CVI-6807, co-funded by the European Regional Development Fund), by the Spanish Ministerio de Educación e Innovación (through project CGL2011-23841, co-funded by the European Regional Development Fund) and by the University of Jaén (through the program “Programa propio de ayudas para la realización de proyectos de investigación”, UJA-08-16-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Palomeque.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorite, P., Maside, X., Sanllorente, O. et al. The ant genomes have been invaded by several types of mariner transposable elements. Naturwissenschaften 99, 1007–1020 (2012). https://doi.org/10.1007/s00114-012-0982-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0982-5

Keywords

Navigation