Skip to main content
Log in

The transposable element impala, a fungal member of the Tc1-mariner superfamily

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A new transposable element has been isolated from an unstable niaD mutant of the fungus Fusarium oxysporum. This element, called impala, is 1280 nucleotides long and has inverted repeats of 27 bp. Impala inserts into a TA site and leaves behind a “footprint” when it excises. The inserted element, impala-160, is cis-active, but is probably trans-defective owing to several stop codons and frameshifts. Similarities exist between the inverted repeats of impala and those of transposons belonging to the widely dispersed mariner and Tc1 families. Moreover, translation of the open reading frame revealed three regions showing high similarities with Tc1 from Caenorhabditis elegans and with the mariner element of Drosophila mauritiana. The overall comparison shows that impala occupies an intermediate position between the mariner and Tcl-like elements, suggesting that all these elements belong to the same superfamily. The degree of relatedness observed between these elements, described in different kingdoms, raises the question of their origin and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brezinsky L, Wang GVL, Humphreys T, Hunt J (1990) The transposable element Uhu from Hawaiian Drosophila — member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res 18:2053–2059

    Google Scholar 

  • Bryan G, Garza D, Hard D (1990) Insertion and excision of the transposable element mariner in Drosophila. Genetics 125:103–114

    Google Scholar 

  • Burnett JH (1984) Aspects of Fusarium genetics. In: Moss MO, Smith JE (eds) The applied mycology of Fusarium. Cambridge University Press, Cambridge, pp 39–69

    Google Scholar 

  • Caizzi R, Caggese C, Pimpinelli S (1993) Bari-1, a new transposon-like family in Drosophila melanogaster with a unique chromatin organisation. Genetics 133:335–345

    Google Scholar 

  • Capy P, Anxolabehere D, Langin T (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends Genet 10:7–12

    Google Scholar 

  • Collins J, Forbes E, Anderson P (1989) The Tc3 family of transposable genetic element in Caenorhabditis elegans. Genetics 121:47–55

    Google Scholar 

  • Daboussi MJ, Langin T, Brygoo Y (1992) Fotl, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    Google Scholar 

  • Diolez A, Langin T, Gerlinger C, Brygoo Y, Daboussi MJ (1993) The nia gene of Fusarium oxysporum: isolation, sequence and development of a homologous transformation system. Gene 131:61–67

    Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase-related genes: new members in transposon-like elements of ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91:942–946

    Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microb Interact 6:114–126

    Google Scholar 

  • Doring HP, Starlinger P (1986) Molecular aspects of transposable elements in plants. Annu Rev Genet 20:175–200

    Google Scholar 

  • Eide D, Anderson P (1988) Insertion and excision of Caenorhabditis elegans transposable element Tcl. Mol Cell Biol 8:737–746

    Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Google Scholar 

  • Frantz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tcl-like family of transposons. Nucleic Acids Res 19:6646

    Google Scholar 

  • Goyon C, Faugeron G (1989) Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9:2818–2827

    Google Scholar 

  • Green MM (1988) Mobile DNA elements and spontaneous mutation. In: Lambert ME, McDonald JF, Weinstein IB (eds) Eukaryotic transposable elements as mutagenic agents. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 41–50

    Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1988) The structure and organisation of nuclear genes in filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL press, Oxford, pp 93–139

    Google Scholar 

  • Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequence in the genome of a fungal plant pathogen. Proc Natl Acad Sci USA 86:9981–9985

    Google Scholar 

  • Harris LJ, Baillie DL, Rose AM (1988) Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucleic Acids Res 16:5991–5998

    Google Scholar 

  • Henikoff S, Plasterk RHA (1988) Related transposons in C. elegans and D. melanogaster. Nucleic Acids Res 16:6234

    Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes Trends Biotechnol 8:340–344

    Google Scholar 

  • Julien J, Poirier-Hamon S, Brygoo Y (1992) Foret-1, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum. Nucleic Acids Res 20:3933–3937

    Google Scholar 

  • Kinsey JA (1989) Restricted distribution of the Tad transposon in strains of Neurospora. Curr Genet 15:271–275

    Google Scholar 

  • Kinsey JA, Helber J (1989) Isolation of a transposable element from Neurospora crassa. Proc Natl Acad Sci USA 86:1929–1933

    Google Scholar 

  • Kulkosky JK, Jones S, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposons. Mol Cell Biol 12:2331–2338

    Google Scholar 

  • Lidholm DA, Gudmundsson GH, Boman HG (1991) A highly repetitive mariner-like element in the genome of Hyalophora cecropia. J Biol Chem 266:11518–11521

    Google Scholar 

  • McDonald JF (1992) Transposable elements and evolution. Special issue of Genetica 86. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mc Hale MT, Roberts IA, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT-1, an LTR-retrotransposon in Cladosporium fulvum, a pathogen of tomato. Mol Gen Genet 233:337–347

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Molnar A, Sulyok L, Hornok L (1990) Parasexual recombination between vegetatively incompatible strains in Fusarium oxyporum. Mycol Res 94:393–398

    Google Scholar 

  • Plasterk HA (1991) The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J 10:1919–1925

    Google Scholar 

  • Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Can J Bot 63:179–183

    Google Scholar 

  • Rat L, Veuille M, Lepesant JA (1991) Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J Mol Evol 33:194–203

    Google Scholar 

  • Robertson HM, Lampe DJ, MacLeod EG (1992) A mariner transposable element from a lacewing. Nucleic Acids Res 20:125–139

    Google Scholar 

  • Rosenzweig B, Liao LW, Hirsh D (1983) Sequence of the C. elegans transposable element Tcl. Nucleic Acids Res 11:4201–4209

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Sharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schukkink RF, Plasterk RHA (1990) TcA, the putative transposase of the C. elegans Tcl transposon, has an N-terminal binding domain. Nucleic Acids Res 18:895–900

    Google Scholar 

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741–752

    Google Scholar 

  • Smith PA, Corces VG (1991) Drosophila transposable elements: mechanisms of mutagenesis and interactions with the host genome. Adv Genet 29:229–299

    Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, Thierry-Mieg J, Qui L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Hawkins T, Ainscough R, Waterson R (1992) The C. elegans genome sequencing project: a beginning. Nature 356:37–41

    Google Scholar 

  • Tudor M, Loocka M, Goodell M, Pettitt J, O'Hare K (1992) The pogo transposable element of Drosophila melanogaster. Mol Gen Genet 232:126–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Finnegan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langin, T., Capy, P. & Daboussi, MJ. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Molec. Gen. Genet. 246, 19–28 (1995). https://doi.org/10.1007/BF00290129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290129

Key words

Navigation