Skip to main content
Log in

Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blum RH, Carter SK (1974) Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med 80:249–259

    Article  CAS  PubMed  Google Scholar 

  2. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  CAS  PubMed  Google Scholar 

  3. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  CAS  PubMed  Google Scholar 

  4. Ries L, Melbert D, Krapcho M (2007) SEER Cancer Statistics Review, 1975–2004. In: Institute NC (ed), Bethesda

  5. Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA, Wallace KB (2010) Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology 270:92–98

    Article  CAS  PubMed  Google Scholar 

  6. Slordal L, Spigset O (2006) Heart failure induced by non-cardiac drugs. Drug Saf 29:567–586

    Article  PubMed  Google Scholar 

  7. Lenneman AJ, Wang L, Wigger M, Frangoul H, Harrell FE, Silverstein C, Sawyer DB, Lenneman CG (2013) Heart transplant survival outcomes for adriamycin-dilated cardiomyopathy. Am J Cardiol 111:609–612

    Article  PubMed  Google Scholar 

  8. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815

    Article  CAS  PubMed  Google Scholar 

  9. Lipshultz SE, Karnik R, Sambatakos P, Franco VI, Ross SW, Miller TL (2014) Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr Opin Cardiol 29:103–112

    Article  PubMed  Google Scholar 

  10. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Article  CAS  PubMed  Google Scholar 

  11. Meredith AM, Dass CR (2016) Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 68:729–741

    Article  CAS  PubMed  Google Scholar 

  12. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225

    Article  CAS  PubMed  Google Scholar 

  13. Tacar O, Dass CR (2013) Doxorubicin-induced death in tumour cells and cardiomyocytes: is autophagy the key to improving future clinical outcomes? J Pharm Pharmacol 65:1577–1589

    Article  CAS  PubMed  Google Scholar 

  14. De Angelis A, Utbanek K, Capetta D, Berrino L (2016) Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology 2

  15. Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M, Valks DM (2003) Regulation of cardiac myocyte cell death. Pharmacol Ther 97:223–261

    Article  CAS  PubMed  Google Scholar 

  16. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  CAS  PubMed  Google Scholar 

  17. Weiner LM (1994) Oxygen radicals generation and DNA scission by anticancer and synthetic quinones. Methods Enzymol 233:92–105

    Article  CAS  PubMed  Google Scholar 

  18. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C et al (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754

    Article  CAS  PubMed  Google Scholar 

  19. Herman EH, Zhang J, Lipshultz SE, Rifai N, Chadwick D, Takeda K, Yu ZX, Ferrans VJ (1999) Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol 17:2237–2243

    CAS  PubMed  Google Scholar 

  20. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    Article  PubMed  Google Scholar 

  21. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499

    Article  CAS  PubMed  Google Scholar 

  22. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    Article  CAS  PubMed  Google Scholar 

  24. Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Mattila S, Nieminen MS, Parvinen M, Voipio-Pulkki LM (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Investig 29:380–386

    Article  CAS  Google Scholar 

  25. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642

    Article  PubMed  Google Scholar 

  27. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  28. Bae S, Siu PM, Choudhury S, Ke Q, Choi JH, Koh YY, Kang PM (2010) Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA. Am J Physiol Heart Circ Physiol 299:H1374–H1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreira AC, Branco AF, Sampaio SF, Cunha-Oliveira T, Martins TR, Holy J, Oliveira PJ, Sardao VA (2014) Mitochondrial apoptosis-inducing factor is involved in doxorubicin-induced toxicity on H9c2 cardiomyoblasts. Biochim Biophys Acta 1842:2468–2478

    Article  CAS  PubMed  Google Scholar 

  30. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839–8846

    Article  CAS  PubMed  Google Scholar 

  31. Huber HJ, Dussmann H, Kilbride SM, Rehm M, Prehn JH (2011) Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release. Mol Syst Biol 7:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmid J, Dussmann H, Boukes GJ, Flanagan L, Lindner AU, O'Connor CL, Rehm M, Prehn JH, Huber HJ (2012) Systems analysis of cancer cell heterogeneity in caspase-dependent apoptosis subsequent to mitochondrial outer membrane permeabilisation. J Biol Chem. doi:10.1074/jbc.M112.411827

    Google Scholar 

  33. Sawyer DB (2013) Anthracyclines and heart failure. N Engl J Med 368:1154–1156

    Article  CAS  PubMed  Google Scholar 

  34. Xiong S, Van Pelt CS, Elizondo-Fraire AC, Fernandez-Garcia B, Lozano G (2007) Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation 115:2925–2930

    Article  CAS  PubMed  Google Scholar 

  35. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038

    Article  CAS  PubMed  Google Scholar 

  36. Li D, Li J, An Y, Yang Y, Zhang SQ (2013) Doxorubicin-induced apoptosis in H9c2 cardiomyocytes by NF-kappaB dependent PUMA upregulation. Eur Rev Med Pharmacol Sci 17:2323–2329

    CAS  PubMed  Google Scholar 

  37. Toth A, Jeffers JR, Nickson P, Min JY, Morgan JP, Zambetti GP, Erhardt P (2006) Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 291:H52–H60

    Article  CAS  PubMed  Google Scholar 

  38. Huang J, Ito Y, Morikawa M, Uchida H, Kobune M, Sasaki K, Abe T, Hamada H (2003) Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochem Biophys Res Commun 311:64–70

    Article  CAS  PubMed  Google Scholar 

  39. Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95:734–741

    Article  CAS  PubMed  Google Scholar 

  40. Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V et al (2003) Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284:H2351–H2359

    Article  CAS  PubMed  Google Scholar 

  41. Konorev EA, Vanamala S, Kalyanaraman B (2008) Differences in doxorubicin-induced apoptotic signaling in adult and immature cardiomyocytes. Free Radic Biol Med 45:1723–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeremias I, Stahnke K, Debatin KM (2005) CD95/Apo-1/Fas: independent cell death induced by doxorubicin in normal cultured cardiomyocytes. Cancer Immunol Immunother 54:655–662

    Article  CAS  PubMed  Google Scholar 

  43. Liao X, Wang X, Gu Y, Chen Q, Chen LY (2005) Involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. Life Sci 77:160–174

    Article  CAS  PubMed  Google Scholar 

  44. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  45. Huber HJ, McKiernan RG, Prehn JH (2014) Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches? J Mol Med (Berl) 92:227–237

    Article  CAS  Google Scholar 

  46. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, Deng J, Anderson KC, Richardson P, Tai YT et al (2011) Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334:1129–1133

    Article  PubMed  Google Scholar 

  47. Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M (2005) Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi J, Zhang L, Zhang YW, Surma M, Mark Payne R, Wei L (2012) Downregulation of doxorubicin-induced myocardial apoptosis accompanies postnatal heart maturation. Am J Physiol Heart Circ Physiol 302:H1603–H1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    Article  CAS  PubMed  Google Scholar 

  51. Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J, Nakamura N, Mitsui Y, Tomoike H (2000) Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin. J Mol Cell Cardiol 32:881–889

    Article  CAS  PubMed  Google Scholar 

  52. Ibe W, Saraste A, Lindemann S, Bruder S, Buerke M, Darius H, Pulkki K, Voipio-Pulkki LM (2007) Cardiomyocyte apoptosis is related to left ventricular dysfunction and remodelling in dilated cardiomyopathy, but is not affected by growth hormone treatment. Eur J Heart Fail 9:160–167

    Article  CAS  PubMed  Google Scholar 

  53. Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C, Zeiher AM, Dimmeler S (2002) Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest 109:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Purevjav E, Nelson DP, Varela JJ, Jimenez S, Kearney DL, Sanchez XV, DeFreitas G, Carabello B, Taylor MD, Vatta M et al (2007) Myocardial Fas ligand expression increases susceptibility to AZT-induced cardiomyopathy. Cardiovasc Toxicol 7:255–263

    Article  CAS  PubMed  Google Scholar 

  55. Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, McNamara DA, Murray F et al (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res 73:519–528

    Article  CAS  PubMed  Google Scholar 

  56. Certo M, Del Gaizo MV, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  CAS  PubMed  Google Scholar 

  57. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F et al (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37:837–846

    Article  CAS  PubMed  Google Scholar 

  58. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598

    CAS  PubMed  Google Scholar 

  59. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, Bader M, Martin U, Bauersachs J, Wollert KC et al (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113:1203–1212

    Article  CAS  PubMed  Google Scholar 

  60. Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, Retief J, Sistare FD, Herman EH (2010) Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol 66:303–314

    Article  CAS  PubMed  Google Scholar 

  61. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  62. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    CAS  PubMed  Google Scholar 

  63. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  64. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  65. van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ (2004) Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 61:218–226

    Article  PubMed  Google Scholar 

  66. Shao D, Tian R (2015) Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 6:331–351

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, Hakim G (2002) Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta 1567:150–156

    Article  CAS  PubMed  Google Scholar 

  68. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9:1234–1236

    Article  CAS  PubMed  Google Scholar 

  69. Rehm M, Huber HJ, Dussmann H, Prehn JH (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheridan C, Martin SJ (2008) Commitment in apoptosis: slightly dead but mostly alive. Trends Cell Biol 18:353–357

    Article  CAS  PubMed  Google Scholar 

  71. Putinski C, Abdul-Ghani M, Stiles R, Brunette S, Dick SA, Fernando P, Megeney LA (2013) Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 110:E4079–E4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M (2001) Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes. Cardiol Clin 19:113–126

    Article  CAS  PubMed  Google Scholar 

  73. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM (1980) Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta 597:1–14

    Article  CAS  PubMed  Google Scholar 

  74. Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 36:11293–11297

    Article  CAS  PubMed  Google Scholar 

  75. Xu MF, Tang PL, Qian ZM, Ashraf M (2001) Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci 68:889–901

    Article  CAS  PubMed  Google Scholar 

  76. Hashem SI, Perry CN, Bauer M, Han S, Clegg SD, Ouyang K, Deacon DC, Spinharney M, Panopoulos AD, Izpisua Belmonte JC et al (2015) Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 33:2343–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  78. Vedam K, Nishijima Y, Druhan LJ, Khan M, Moldovan NI, Zweier JL, Ilangovan G (2010) Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice. Am J Physiol Heart Circ Physiol 298:H1832–H1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tacar O, Indumathy S, Tan ML, Baindur-Hudson S, Friedhuber AM, Dass CR (2015) Cardiomyocyte apoptosis vs autophagy with prolonged doxorubicin treatment: comparison with osteosarcoma cells. J Pharm Pharmacol 67:231–243

    Article  CAS  PubMed  Google Scholar 

  80. Dhingra R, Dhingra A, Jayas R, Kirshenbaum LA (2016) Ellagic acid suppresses mitophagy-induced necrotic cell death during doxorubicin cardiotoxicity

  81. Weiner A, Kaminaris A, Kobayashi S, Gerdes M, Liang Q (2016) The role of mitophagy in doxorubicin-induced cardiomyocyte death. In: Meeting EB (ed) Faseb J

  82. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. Intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 279:25535–25543

    Article  CAS  PubMed  Google Scholar 

  83. Ichim G, Tait SW (2016) A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16:539–548

    Article  CAS  PubMed  Google Scholar 

  84. Murray TV, McMahon JM, Howley BA, Stanley A, Ritter T, Mohr A, Zwacka R, Fearnhead HO (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793

    Article  CAS  PubMed  Google Scholar 

  85. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  86. Branco AF, Sampaio SF, Moreira AC, Holy J, Wallace KB, Baldeiras I, Oliveira PJ, Sardao VA (2012) Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovasc Toxicol 12:326–340

    Article  CAS  PubMed  Google Scholar 

  87. Hector S, Rehm M, Schmid J, Kehoe J, McCawley N, Dicker P, Murray F, McNamara D, Kay EW, Concannon CG et al (2012) Clinical application of a systems model of apoptosis execution for the prediction of colorectal cancer therapy responses and personalisation of therapy. Gut (in press). doi:10.1136/gutjnl-2011-300433

    PubMed  Google Scholar 

  88. Huber HJ, Dussmann H, Wenus J, Kilbride S, Prehn JH (2011) Mathematical modelling of the mitochondrial apoptosis pathway BBA Mol Cell Res x

  89. Junjing Z, Yan Z, Baolu Z (2010) Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr 47:238–245

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dirkx E, da Costa Martins PA, De Windt LJ (2013) Regulation of fetal gene expression in heart failure. Biochim Biophys Acta 1832:2414–2424

    Article  CAS  PubMed  Google Scholar 

  91. Vandenwijngaert S, Pokreisz P, Hermans H, Gillijns H, Pellens M, Bax NA, Coppiello G, Oosterlinck W, Balogh A, Papp Z et al (2013) Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling. PLoS One 8:e58841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  93. Vander Heiden M, Cantley L, Thomson C (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Bijzonder Onderzoeksfonds of the KU Leuven (PF/10/014) to H. J. H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich J. Huber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kankeu, C., Clarke, K., Passante, E. et al. Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited. J Mol Med 95, 239–248 (2017). https://doi.org/10.1007/s00109-016-1494-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1494-0

Keywords

Navigation