Skip to main content
Log in

Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The antineoplastic anthracycline doxorubicin can induce a dose-dependent cardiomyopathy that limits the total cumulative dose prescribed to cancer patients. In both preclinical and clinical studies, pretreatment with dexrazoxane, an intracellular iron chelator, partially protects against anthracycline-induced cardiomyopathy. To identify potential additional cardioprotective treatment strategies, we investigated early doxorubicin-induced changes in cardiac gene expression.

Methods

Spontaneously hypertensive male rats (n = 47) received weekly intravenous injections of doxorubicin (3 mg/kg) or saline 30 min after pretreatment with dexrazoxane (50 mg/kg) or saline by intraperitoneal injection. Cardiac samples were analyzed 24 h after the first (n = 20), second (n = 13), or third (n = 14) intravenous injection on days 1, 8, or 15 of the study, respectively.

Results

Rats receiving three doses of doxorubicin had minimal myocardial alterations that were attenuated by dexrazoxane. Cardiac expression levels of genes associated with the Nrf2-mediated stress response were increased after a single dose of doxorubicin, but not affected by cardioprotectant pretreatment. In contrast, an early repressive effect of doxorubicin on transcript levels of genes associated with mitochondrial function was attenuated by dexrazoxane pretreatment. Dexrazoxane had little effect on gene expression by itself.

Conclusions

Genomic analysis provided further evidence that mitochondria are the primary target of doxorubicin-induced oxidative damage that leads to cardiomyopathy and the primary site of cardioprotective action by dexrazoxane. Additional strategies that prevent the formation of oxygen radicals by doxorubicin in mitochondria may provide increased cardioprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wouters KA, Kremer LCM, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561–578

    Article  CAS  PubMed  Google Scholar 

  2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  PubMed  Google Scholar 

  3. Doroshow JH (1983) Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res 43:4543–4551

    CAS  PubMed  Google Scholar 

  4. Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65:128–135

    Article  CAS  PubMed  Google Scholar 

  5. Hasinoff BB, Herman EH (2007) Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc Toxicol 7(2):140–144

    Article  CAS  PubMed  Google Scholar 

  6. Imondi AR, Della Torre P, Mazué G, Sullivan TM, Robbins TL, Hagerman LM, Podestà A, Pinciroli G (1996) Dose-response relationship of dexrazoxane for prevention of doxorubicin-induced cardiotoxicity in mice, rats, and dogs. Cancer Res 56:4200–4204

    CAS  PubMed  Google Scholar 

  7. Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61(1):154–171

    PubMed  Google Scholar 

  8. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839–8846

    Article  CAS  PubMed  Google Scholar 

  9. Martin E, Thougaard AV, Grauslund M, Jensen PB, Bjorkling F, Hasinoff BB, Tjørnelund J, Sehested M, Jensen LH (2009) Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology 255:72–79

    Article  CAS  PubMed  Google Scholar 

  10. Herman EH, el-Hage AN, Ferrans VJ, Ardalan B (1985) Comparison of the severity of the chronic cardiotoxicity produced by doxorubicin in normotensive and hypertensive rats. Toxicol Appl Pharmacol 78:202–214

    Article  CAS  PubMed  Google Scholar 

  11. Billingham ME (1991) Role of endomyocardial biopsy in diagnosis and treatment of heart disease. In: Silver MD (ed) Cardiovascular pathology. Churchill Livingstone, New York, pp 1465–1486

    Google Scholar 

  12. Chou JW, Zhou T, Kaufmann WK, Paules RS, Bushel PR (2007) Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinform 8:427

    Article  Google Scholar 

  13. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  14. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  15. Herman EH, el-Hage A, Ferrans VJ (1988) Protective effect of ICRF-187 on doxorubicin-induced cardiac and renal toxicity in spontaneously hypertensive (SHR) and normotensive (WKY) rats. Toxicol Appl Pharmacol 92:42–53

    Article  CAS  PubMed  Google Scholar 

  16. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029

    Article  CAS  PubMed  Google Scholar 

  17. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    CAS  PubMed  Google Scholar 

  18. Semena GL (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998

    Article  Google Scholar 

  19. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Article  CAS  PubMed  Google Scholar 

  20. Sam F, Siwik DA (2006) Digesting the remodeled heart: role of lysosomal cysteine proteases in heart failure. Hypertension 48:830–831

    Article  CAS  PubMed  Google Scholar 

  21. Burke BE, Gambliel H, Olson RD, Bauer FK, Cusack BJ (2000) Prevention by dexrazoxane of down-regulation of ryanodine receptor gene expression in anthracycline cardiomyopathy in the rat. Brit J Pharmacol 131:1–4

    Article  CAS  Google Scholar 

  22. Yager JY, Hartfield DS (2002) Neurological manifestations of iron deficiency in childhood. Pediatr Neurol 27:85–92

    Article  PubMed  Google Scholar 

  23. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  CAS  PubMed  Google Scholar 

  24. Zarain-Herzberg A (2006) Regulation of the sarcoplasmic reticulum Ca2+-ATPase expression in the hypertrophic and failing heart. Can J Physiol Pharmacol 84:509–521

    CAS  PubMed  Google Scholar 

  25. Minamisawa S, Oshikawa J, Takeshima H, Hoshijima M, Wang Y, Chien KR, Ishikawa Y, Matsuoka R (2004) Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res Commun 325:852–856

    Article  CAS  PubMed  Google Scholar 

  26. Borg TK, Markwald R (2007) Periostin: more than just an adhesion molecule. Circ Res 101:230–231

    Article  CAS  PubMed  Google Scholar 

  27. Berthiaume JM, Wallace KB (2007) Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovasc Toxicol 7:178–191

    Article  CAS  PubMed  Google Scholar 

  28. Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93:105–115

    Article  CAS  PubMed  Google Scholar 

  29. Freyssenet D (2007) Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102:529–540

    Article  CAS  PubMed  Google Scholar 

  30. Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275

    Article  CAS  PubMed  Google Scholar 

  31. Brown HR, Ni H, Benavides G, Yoon L, Hyder K, Giridhar J, Gardner G, Tyler RD, Morgan KT (2002) Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat. Toxicol Pathol 30:452–469

    CAS  PubMed  Google Scholar 

  32. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18:1779–1791

    Article  CAS  PubMed  Google Scholar 

  33. Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60:1789–1792

    CAS  PubMed  Google Scholar 

  34. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598

    CAS  PubMed  Google Scholar 

  35. Zhang J, Clark JR, Herman EH, Ferrans VJ (1996) Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol 28:1931–1943

    Article  CAS  PubMed  Google Scholar 

  36. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, Bader M, Martin U, Bauersachs J, Wollert KC, Dietz R, von Harsdorf R, German Heart Failure Network (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113:1203–1212

    Article  CAS  PubMed  Google Scholar 

  37. Forner F, Foster LJ, Campanaro S, Valle G, Mann M (2006) Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteom 5:608–619

    Article  CAS  Google Scholar 

  38. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S et al (2003) Characterization of the human heart mitochondrial proteome. Nature Biotech 21:281–286

    Article  CAS  Google Scholar 

  39. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Affymetrix Inc. provided the microarrays and the loan of equipment to the FDA for the studies in this manuscript. We thank B. Shimada, S. Kassam, D.B. Finkelstein, and J. Lescallet for providing training and assistance with Affymetrix technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol L. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, K.L., Rosenzweig, B.A., Zhang, J. et al. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol 66, 303–314 (2010). https://doi.org/10.1007/s00280-009-1164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1164-9

Keywords

Navigation