Skip to main content

Advertisement

Log in

Myocardial Fas Ligand Expression Increases Susceptibility to AZT-Induced Cardiomyopathy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Background Dilated cardiomyopathy (DCM) and myocarditis occur in many HIV-infected individuals, resulting in symptomatic heart failure in up to 5% of patients. Highly active antiretroviral therapy (HAART) has significantly reduced morbidity and mortality of acquired immunodeficiency syndrome (AIDS), but has resulted in an increase in cardiac and skeletal myopathies. Methods and Results In order to investigate whether the HAART component zidovudine (3′-azido-2′,3′-deoxythymidine; AZT) triggers the Fas-dependent cell-death pathway and cause cytoskeletal disruption in a murine model of DCM, 8-week-old transgenic (expressing Fas ligand in the myocardium: FasL Tg) and non-transgenic (NTg) mice received water ad libitum containing different concentrations of AZT (0, 0.07, 0.2, and 0.7 mg/ml). After 6 weeks, cardiac function was assessed by echocardiography and morphology was assessed by histopathologic and immunohistochemical methods. NTg and untreated FasL Tg mice showed little or no change in cardiac structure or function. In contrast, AZT-treated FasL Tg mice developed cardiac dilation and depressed cardiac function in a dose-dependent manner, with concomitant inflammatory infiltration of both ventricles. These changes were associated with an increased sarcolemmal expression of Fas and FasL, as well as increased activation of caspase 3, translocation of calpain 1 to the sarcolemma and sarcomere, and increased numbers of cells undergoing apoptosis. These were associated with changes in dystrophin and cardiac troponin I localization, as well as loss of sarcolemmal integrity. Conclusions The expression of Fas ligand in the myocardium, as identified in HIV-positive patients, might increase the susceptibility to HAART-induced cardiomyopathy due to activation of apoptotic pathways, resulting in cardiac dilation and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen, I. S. et al. (1986). Congestive cardiomyopathy in association with the acquired immunodeficiency syndrome. The New England Journal of Medicine, 315(10), 628–630.

    Article  PubMed  CAS  Google Scholar 

  2. Levy, W. S. et al. (1988). Myocarditis diagnosed by endomyocardial biopsy in human immunodeficiency virus infection with cardiac dysfunction. The American Journal of Cardiology, 62(9), 658–659.

    Article  PubMed  CAS  Google Scholar 

  3. Lipshultz, S. E. et al. (1989). Cardiovascular manifestations of human immunodeficiency virus infection in infants and children. The American Journal of Cardiology, 63(20), 1489–1497.

    Article  PubMed  CAS  Google Scholar 

  4. Lipshultz, S. E. et al. (2000). Cardiac dysfunction and mortality in HIV-infected children: the prospective P2C2 HIV multicenter study. Pediatric pulmonary and cardiac complications of vertically transmitted HIV infection (P2C2 HIV) study group. Circulation, 102(13), 1542–1548.

    PubMed  CAS  Google Scholar 

  5. Kearney, D.L. et al. (2003). Postmortem cardiomegaly and echocardiographic measurements of left ventricular size and function in children infected with the human immunodeficiency virus: the prospective P2C2 HIV multicenter study. Cardiovascular Pathology, 12(3), 140–148.

    Article  PubMed  Google Scholar 

  6. Grenier, M. A. et al. (1994). Cardiac disease in children with HIV: relationship of cardiac disease to HIV symptomatology. Pediatric AIDS and HIV Infection, 5, 174–179.

    Google Scholar 

  7. Barbaro, G., et al. (1998). Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. Gruppo Italiano per lo Studio Cardiologico dei Pazienti Affetti da AIDS. The New England Journal of Medicine, 339(16), 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  8. Bowles, N. E. et al. (1999). The detection of viral genomes by polymerase chain reaction in the myocardium of pediatric patients with advanced HIV disease. Journal of the American College of Cardiology, 34(3), 857–665.

    Article  PubMed  CAS  Google Scholar 

  9. Barbaro, G., & Lipshultz, S. E. (2001). Pathogenesis of HIV-associated cardiomyopathy. Annals of the New York Academy of Sciences, 946, 57–81.

    Article  PubMed  CAS  Google Scholar 

  10. Palella, F. J., Jr. et al. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. The New England Journal of Medicine, 338(13), 853–860.

    Article  PubMed  Google Scholar 

  11. Dalakas, M. C. et al. (1990). Mitochondrial myopathy caused by long-term zidovudine therapy. The New England Journal of Medicine, 322(16), 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis, W., & Dalakas, M. C. (1995). Mitochondrial toxicity of antiviral drugs. Nature Medicine, 1(5), 417–422.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis, W. et al. (2001). Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice. Laboratory Investigation, 81(11), 1527–1536.

    PubMed  CAS  Google Scholar 

  14. Fiala, M. et al. (2004). HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovascular Toxicology, 4(4), 327–337.

    Article  PubMed  CAS  Google Scholar 

  15. Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770–776.

    Article  PubMed  CAS  Google Scholar 

  16. Ashkenazi, A., & Dixit, V. M. (1998). Death receptors: signaling and modulation. Science, 281(5381), 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  17. Nagata, S., & Golstein, P. (1995). The Fas death factor. Science, 267(5203), 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  18. Fiala, M. et al. (2004). HIV-1 induces cardiomyopathyby cardiomyocyte invasion and gp120, Tat, and cytokine apoptotic signaling. Cardiovascular Toxicology, 4(2), 97–107.

    Article  PubMed  CAS  Google Scholar 

  19. Nelson, D.P. et al. (2000). Proinflammatory consequences of transgenic Fas ligand expression in the heart. The Journal of Clinical Investigation, 105(9), 199–1208.

    Google Scholar 

  20. Pileri, S.A. et al. (1997). Antigen retrieval techniques in immunohistochemistry: comparison of different methods. Journal of Pathology, 183(1), 116–1123.

    Article  PubMed  CAS  Google Scholar 

  21. Badorff, C. et al. (1999). Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Medicine, 5(3), 320–326.

    Article  PubMed  CAS  Google Scholar 

  22. Nemoto, S. et al. (2002). Effects of changes in left ventricular contractility on indexes of contractility in mice. American Journal of Physiology. Heart and Circulatory Physiology, 283(6), H2504–H2510.

    PubMed  CAS  Google Scholar 

  23. Englund, J. A. et al. (1997). Zidovudine, Didanosine, or Both as the Initial Treatment for Symptomatic HIV-Infected Children. The New England Journal of Medicine, 336(24), 1704–1712.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis, W. et al. (2000). Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Laboratory Investigation, 80(2), 187–197.

    Article  PubMed  CAS  Google Scholar 

  25. Vatta, M. et al. (2004). Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assist devices. Journal of the American College of Cardiology, 43(5), 811–817.

    Article  PubMed  CAS  Google Scholar 

  26. Vatta, M. et al. (2002). Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet, 359(9310), 936–941.

    Article  PubMed  CAS  Google Scholar 

  27. Communal, C. et al. (2002). Functional consequences of caspase activation in cardiac myocytes. Proceedings of the National Academy of Sciences, 99(9), 6252–6256.

    Article  CAS  Google Scholar 

  28. Di Lisa, F. et al. (1995). Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. The Biochemical Journal, 308(Pt 1), 57–61.

    PubMed  CAS  Google Scholar 

  29. Purintrapiban, J., Wang, M. C., & Forsberg, N. E. (2003). Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 136(3), 393–401.

    Article  CAS  Google Scholar 

  30. Bowles, K. R., & Bowles, N. E. (2004). Genetics of inherited cardiomyopathies. Expert Review of Cardiovascular Theraphy, 2(5), 683–697.

    Article  CAS  Google Scholar 

  31. Herskowitz, A. et al. (1994). Myocarditis and cardiotropic viral infection associated with severe left ventricular dysfunction in late-stage infection with human immunodeficiency virus. Journal of the American College of Cardiology, 24(4), 1025–1032.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported a grant from the National Institutes of Health, National Heart, Lung and Blood Institute (HL-72696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil E. Bowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purevjav, E., Nelson, D.P., Varela, J.J. et al. Myocardial Fas Ligand Expression Increases Susceptibility to AZT-Induced Cardiomyopathy. Cardiovasc Toxicol 7, 255–263 (2007). https://doi.org/10.1007/s12012-007-9004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-9004-9

Keywords

Navigation