Skip to main content
Log in

Chemical analysis of heat treated softwoods

Chemische Analyse von wärmebehandeltem Holz

  • ORIGINALARBEITEN ORIGINALS
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Heat treatment of wood has been found an effective method to improve dimensional stability and durability against biodegradation. A two-stage heat treatment of wood at relatively mild conditions (<200 °C) was investigated by using different chemical analysing methods, such as a wood chemical component analysis, CHNO-elemental analysis, UV-spectroscopy, and analysis of the acetyl and free hydroxyl group content. The results of this study contribute to a better understanding of the typical reaction mechanisms occurring and of the effect of heat treatment on the properties of wood, as described in previous 13C-NMR and FTIR studies of heat treated wood.

Zusammenfassung

Die Wärmebehandlung von Holz hat sich als ein wirksames Verfahren zur Verbesserung der Dimensionsstabilität und Fäuleresistenz erwiesen. In dieser Studie wurde eine zweistufige Wärmebehandlung von Holz unter relativ milden Bedingungen (<200 °C) untersucht. Dabei wurden verschiedene chemische Analyseverfahren, wie zum Beispiel chemische Analyse der Holzbestandteile, CHNO-Elementaranalyse, UV-Spektroskopiesowie Analyse des Acetylgehalts und der freien Hydroxylgruppen angewandt. Die Ergebnisse dieser Studie tragen zu einem besseren Verständnis der auftretenden Reaktionsmechanismen sowie der Wirkung einer Wärmebehandlung auf die Eigenschaften von Holz bei, die bereits in früheren 13C-NMR und FTIR Studien über wärmebehandeltes Holz beschrieben wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatzoglou N, Koeberle PG, Chornet E, Overend RP, Koukios EG (1990) An application to medium consistency suspension of hardwoods using a plug flow reactor. Can J Chem Eng 68:627–638

    CAS  Google Scholar 

  2. Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, pp 275–384

    Google Scholar 

  3. Belkacemi K, Abatzoglou N, Overend RP, Chornet E (1991) Phenomenological kinetics of complex systems: mechanistic condiderations in the solubilization of hemicellulose following aqueous/steam treatment. Ind Eng Chem Res 30:2416–2425

    Article  CAS  Google Scholar 

  4. Bobleter O, Binder H (1980) Dynamischer hydrothermaler Abbau von Holz. Holzforschung 34:48–51

    CAS  Google Scholar 

  5. Boonstra MJ, Tjeerdsma BF, Groeneveld HAC (1998) Thermal modification of non-durable wood species. Part 1, The Plato technology: thermal modification of wood. International Research Group on Wood Preservation, Document no. IRG/WP 98-40123

  6. Boonstra MJ, Pizzi A, Tekely P, Pendlebury J (1996) Chemical modification of Norway spruce and Scots pine. A 13C NMR CP-MAS study of the reactivity and reactions of polymeric wood components with acetic anhydride. Holzforschung 50:215–220

    CAS  Google Scholar 

  7. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrified wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  8. Browning BL (1967) Methods of wood chemistry. John Wiley & Sons, Inc, New York

    Google Scholar 

  9. Burmester A (1973) Einfluss einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- Werkst 31:237–243

    Article  Google Scholar 

  10. Burmester A (1975) Zur Dimensionsstabilisierung von Holz. Holz Roh- Werkst 33:333–335

    Article  CAS  Google Scholar 

  11. Faix O, Böttcher JH (1992) The influence of particle size and concentration in transmission and diffuse spectroscopy of wood. Holz Roh- Werkst 50:221–226

    Article  CAS  Google Scholar 

  12. Fengel D (1980) Experiments on the alkaline extraction of polyoses from spruce holocellulose. Das Papier 34(10):428–433

    CAS  Google Scholar 

  13. Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co, Berlin New York, pp 66–105

    Google Scholar 

  14. Fukazawa K (1992) Ultraviolet microscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, p 578

    Google Scholar 

  15. Giebeler E (1983) Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung. Holz Roh- Werkst 41:87–94

    Article  Google Scholar 

  16. Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley Interscience, New York London Sidney Toronto, pp 241–266

    Google Scholar 

  17. Hillis WE (1984) High temperature and chemical effects on wood stability. Part 1, General considerations. Wood Sci Technol 18:281–293

    Article  CAS  Google Scholar 

  18. Hon DNS (1991) Photochemistry of wood. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 525–555

    Google Scholar 

  19. Okamura K (2001) Structure of cellulose. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 83–108

    Google Scholar 

  20. Sakakibara A (2001) Chemistry of lignin. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 109–173

    Google Scholar 

  21. Ishii T, Shimizu K (2001) Chemistry of cell wall polysaccharides. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, pp 175–212

    Google Scholar 

  22. Kollmann F, Fengel D (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkst 21(3):77–85

    Article  Google Scholar 

  23. Kollmann F, Schneider A (1963) Über dass Sorptionsverhalten wärmebehandelter Hölzer. Holz Roh- Werkst 41:87–94

    Google Scholar 

  24. Kumar S (1994) Chemical modification of wood. Wood Fiber Sci 26(2):270–280

    CAS  Google Scholar 

  25. Militz H, Beckers EPJ, Homan WJ (1997) Modification of solid wood: Research and practical potential. International Research Group in Wood Preservation, Document No IRG/WP 97-40098

  26. Noack D (1969) Über die Heisswasserbehandlung von Rotbuchenholz im Temperaturbereich von 100 bis 180 °C. Holzforsch Holzverwert 21(5):118–124

    CAS  Google Scholar 

  27. Pizzi A, Stephanou A, Boonstra MJ, Pendlebury AJ (1994) A new concept on the chemical modification of wood by organic anhydrides. Holzforschung 48:91–94

    Article  CAS  Google Scholar 

  28. Pott GT (2004) Natural fibers with low moisture sensitivity. In: Natural fibers, plastics and composites, Chapter 8, Kluwer Academic Publishers, ISBN 1 4020 7643 6

  29. Rowell RM (1983) Chemical modification of wood. Forest Prod Abstr 6(12):363–382

    Google Scholar 

  30. Rowell RM (1984) The chemistry of solid wood. American Chemical Society, Washington DC 84

  31. Rowell RM (1984b) Penetration and reactivity of cell wall components. In: The chemistry of solid wood. American Chemical Society, Washington DC, pp 175–210

  32. Rowell RM, Simonson S, Hess DV, Plackett DV, Cronshow D, Dunningham E (1994) Acetyl distribution in acetylated whole wood and reactivity of wood cell-wall components to acetic anhydride. Wood Fiber Sci 26:11–18

    CAS  Google Scholar 

  33. Rubio Torres M, Heitz M, Chauvette G, Chornet E (1986) Conversion and solubilization profiles of a prototype hardwood (Populus tremuloides) following aqueous thermomechanical pre-treatment. Biomass 10:85–96

    Article  Google Scholar 

  34. Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilisation of wood. J For Prod Res Soc 3(9):59–67

    CAS  Google Scholar 

  35. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  36. Stamm AJ (1964) Wood and cellulose science. Ronald Press, USA, pp 312–342

    Google Scholar 

  37. Tjeerdsma BF, Boonstra M, Militz H (1998) Thermal modification of non-durable wood species. Part 2, Improved wood properties of thermally treated wood. International Research Group on Wood Preservation, Document No IRG/WP 98-40124

  38. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood poerformance improvement. Holz Roh- Werkst 56:149–153

    Article  CAS  Google Scholar 

  39. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111

    Article  CAS  Google Scholar 

  40. Viitaniemi P, Jämsä S (1996) Modification of wood by heat treatment. VTT publications 814

  41. Weiland JJ, Guyonnet R (1997) Retifiziertes Holz. 16. Verdichter Holzbau in Europa, Motivation, Erfahrung, Entwicklung, Dreilander Holztagung, 10. Joanneum Research Fachtage, 2.-5.11.1997, Grazer Congress, Grazz, Austria

  42. Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J 122(2):35–43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel J. Boonstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonstra, M., Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Roh Werkst 64, 204–211 (2006). https://doi.org/10.1007/s00107-005-0078-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-005-0078-4

Keywords

Navigation