Skip to main content
Log in

Target volume coverage and dose to organs at risk in prostate cancer patients

Dose calculation on daily cone-beam CT data sets

Zielvolumenerfassung und Risikoorgandosis bei Prostatakarzinompatienten

Dosisberechnung auf täglichen Cone-Beam-CT-Datensätzen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

On the basis of correct Hounsfield unit to electron density calibration, cone-beam computed tomography (CBCT) data provide the opportunity for retrospective dose recalculation in the patient. Therefore, the consequences of translational positioning corrections and of morphological changes in the patient anatomy can be quantified for prostate cancer patients.

Materials and methods

The organs at risk were newly contoured on the CBCT data sets of 7 patients so as to evaluate the actual applied dose. The daily dose to the planning target volume (PTV) was recalculated with and without the translation data, which result from the real patient repositioning.

Results

A CBCT-based dose recalculation with uncertainties less than 3 % is possible. The deviations between the planning CT and the CBCT without the translational positioning correction vector show an average dose difference of − 8 % inside the PTV. An inverse proportional relation between the mean bladder dose and the actual volume of the bladder could be established. The daily applied dose to the rectum is about 1–54 % higher than predicted by the planning CT.

Conclusion

A dose calculation based on CBCT data is possible. The daily positioning correction of the patient is necessary to avoid an underdosage in the PTV. The new contouring of the organs at risk— the bladder and rectum—allows a better appraisal to be made of the total applied dose to these organs.

Zusammenfassung

Ziel

Basierend auf einer Kalibrierung der Hounsfield-Einheiten zur Elektronendichte bieten Cone-Beam-Computed-Tomography-(CBCT)Datensätze die Möglichkeit, die applizierte Dosis im Patienten retrospektiv zu berechnen. Auf dieser Grundlage können die Konsequenzen einer Lagerungskorrektur und der morphologischen Veränderungen für Prostatakarzinompatienten quantifiziert werden.

Materialien und Methoden

Die Risikoorgane wurden auf den CBCT-Daten von 7 Patienten neu konturiert, um die tatsächlich applizierte Dosis zu evaluieren. Die tägliche Dosis im Planungszielvolumen (PTV) wurde mit und ohne die real erfolgten Translationsdaten neu berechnet.

Ergebnisse

Eine Dosisberechnung auf CBCT-Datensätzen mit Unsicherheiten kleiner 3 % ist möglich. Die Abweichungen zwischen Planungs-CT und CBCT ohne Berücksichtigung der bildgestützten Repositionierung des Patienten zeigen im Mittel eine Dosisdifferenz von − 8 % im PTV. Es konnte ein umgekehrt proportionaler Zusammenhang zwischen der mittleren Dosis in der Blase und dem tatsächlichem Volumen der Blase festgestellt werden. Die täglich applizierte Dosis im Rektum ist zwischen 1 und 54 % höher, als im Planungs-CT berechnet wurde.

Schlussfolgerung

Eine Dosisberechnung auf CBCT-Datensätzen ist möglich. Die tägliche Lagerungskorrektur des Patienten ist nötig, um eine Unterdosierung im Zielvolumen zu vermeiden. Die Neukonturierung der Risikostrukturen ermöglicht eine bessere Abschätzung der tatsächlich applizierten Dosis in Blase und Rektum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291

    Article  PubMed  Google Scholar 

  2. Boggula R, Lorenz F, Abo-Madyan Y et al (2009) A new strategy for online adaptive prostate radiotherapy based on cone-beam CT. Z Med Phys 19(4):264–276

    Article  PubMed  Google Scholar 

  3. Cambria R, Jereczek-Fossa BA, Zerini D et al (2011) Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol. Strahlenther Onkol 187(12):799–805

    Article  PubMed  Google Scholar 

  4. Ding GX, Duggan DM, Coffey CW et al (2007) A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol 85(1):116–125

    Article  PubMed  Google Scholar 

  5. Geinitz H, Zimmermann FB, Narkwong L et al (2000) Prostatic carcinoma: problems in the interpretation of rectal dose-volume histograms. Strahlenther Onkol 176(4):168–172

    Article  CAS  PubMed  Google Scholar 

  6. Guan H, Dong H (2009) Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 54(20):6239–6250

    Article  PubMed  Google Scholar 

  7. Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183(2):57–62

    Article  PubMed  Google Scholar 

  8. Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543

    Article  PubMed  Google Scholar 

  9. Hille A, Tows N, Schmidberger H, Hess CF (2005) A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio. Strahlenther Onkol 181(12):789–795

    Article  PubMed  Google Scholar 

  10. Hu CC, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187(10):633–644

    Article  PubMed  Google Scholar 

  11. Rajendran RR, Plastaras JP, Mick R et al (2010) Daily isocenter correction with electromagnetic-based localization improves target coverage and rectal sparing during prostate radiotherapy. Int J Radiat Oncol Biol Phys 76(4):1092–1099

    Article  PubMed  Google Scholar 

  12. Richter A, Hu Q, Steglich D et al (2008) Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol 3:42

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sriram P, Vivekanandan N, Prabakar S (2010) A study on evaluation of kV-CBCT-image-based treatment planning using anthropomorphic phantom. J Med Biol Eng 31(6):429–435

    Article  Google Scholar 

  14. The Phantom Laboratory (2013) Catphan® 503 Manual. The Phantom Laboratory, New York

  15. Treutwein M, Hipp M, Kolbl O, Bogner L (2009) IMRT of prostate cancer: a comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization. Strahlenther Onkol 185(6):379–383

    Article  PubMed  Google Scholar 

  16. Usui K, Ichimaru Y, Okumura Y et al (2013) Dose calculation with a cone beam CT image in image-guided radiation therapy. Radiol Phys Technol 6(1):107–114

    Article  PubMed  Google Scholar 

  17. Wertz H, Boda-Heggemann J, Walter C et al (2007) Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer. Int J Radiat Oncol Biol Phys 67(1):288–295

    Article  PubMed  Google Scholar 

  18. Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52(18):5655–5665

    Article  CAS  PubMed  Google Scholar 

  19. Wolff D, Stieler F, Hermann B et al (2010) Clinical implementation of volumetric intensity-modulated arc therapy (VMAT) with ERGO++. Strahlenther Onkol 186(5):280–288

    Article  PubMed  Google Scholar 

  20. Wolff D, Stieler F, Welzel G et al (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233

    Article  PubMed  Google Scholar 

  21. Wu QJ, Thongphiew D, Wang Z et al (2008) On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol 53(3):673–691

    Article  PubMed  Google Scholar 

  22. Yoo S, Yin FF (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66(5):1553–1561

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a research grant of the University Medical Center Giessen and Marburg (UKGM).

Compliance with ethical guidelines

Conflict of interest. P. Hüttenrauch, M. Witt, D. Wolff, S. Bosold, R. Engenhart-Cabillic, J. Sparenberg, H. Vorwerk, and K. Zink state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hüttenrauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüttenrauch, P., Witt, M., Wolff, D. et al. Target volume coverage and dose to organs at risk in prostate cancer patients. Strahlenther Onkol 190, 310–316 (2014). https://doi.org/10.1007/s00066-013-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0483-2

Keywords

Schlüsselwörter

Navigation