Skip to main content
Log in

Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol

Physikalische und klinische Implikationen der Behandlung bei gefüllter Blase in der Strahlentherapie des Prostatakarzinoms

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To assess the dosimetric and clinical implication when applying the full bladder protocol for the treatment of the localized prostate cancer (PCA).

Patients and Methods

A total of 26 consecutive patients were selected for the present study. Patients underwent two series of CT scans: the day of the simulation and after 40 Gy. Each series consisted of two consecutive scans: (1) full bladder (FB) and (2) empty bladder (EB). The contouring of clinical target volumes (CTVs) and organs at risk (OAR) were compared to evaluate organ motion. Treatment plans were compared by dose distribution and dose–volume histograms (DVH).

Results

CTV shifts were negligible in the laterolateral and superior–inferior directions (the maximum shift was 1.85 mm). Larger shifts were recorded in the anterior–posterior direction (95% CI, 0.83–4.41 mm). From the dosimetric point of view, shifts are negligible: the minimum dose to the CTV was 98.5% (median; 95%CI, 95–99%). The potential advantage for GU toxicity in applying the FB treatment protocol was measured: the ratio between full and empty bladder dose–volume points (selected from our protocol) is below 0.61, excluding the higher dose region where DVHs converge.

Conclusion

Having a FB during radiotherapy does not affect treatment effectiveness, on the contrary it helps achieve a more favorable DVH and lower GU toxicities.

Zusammenfassung

Ziel

Evaluierung der dosimetrischen und klinischen Implikationen bei Anwendung des Gefüllte-Blase-(FB-)Protokolls für die Behandlung des lokalisierten Prostatakarzinoms (PCA).

Patienten und Methoden

26 Patienten wurden für die vorliegende Studie ausgewählt. Sie unterzogen sich zwei Serien von CT-Scans: am Tag der Simulation und nach der Strahlendosis von 40 Gy. Jede Serie bestand aus zwei aufeinanderfolgenden Scans: mit gefüllter (FB) und mit leerer Blase (EB). Die Konturierung der CTVs und OARs wurden verglichen, um die Organbewegung abzuschätzen. Die Behandlungspläne wurden hinsichtlich Dosis und DVH verglichen.

Ergebnisse

Die CTV-Verschiebungen waren vernachlässigbar in laterolateraler und superior-inferiorer Richtung (maximale Verschiebung: 1,85 mm). Größere Verschiebungen wurden in anterior-posteriorer Richtung dokumentiert (0,83–4,41 mm; 95%-CI). In dosimetrischer Hinsicht sind die Verschiebungen geringfügig: Die minimale CTV-Dosis lag bei 98,5% (95– 99%, Median, 95% -CI). Der potentielle Vorteil hinsichtlich der GU-Toxizität bei Anwendung des FB-Behandlungsprotokolls war messbar: Das Verhältnis der Dosis-Volumen-Punkte (aus unserem Protokoll) bei gefüllter bzw. leerer Blase lag unter 0,61, mit Ausnahme der höheren Dosisbereiche, wo die DVHs konvergieren.

Schlussfolgerung

FB während der Strahlentherapie hat keinen Einfluss auf die Wirksamkeit der Behandlung, bewirkt jedoch günstigere DVHs und niedrigere GU-Toxizität.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antolak JA, Rosen II, Childress CH et al. Prostate target volume variations during a course of radiotherapy. Int J Radiat Oncol Biol Phys 1998;42:661–672.

    Article  PubMed  CAS  Google Scholar 

  2. Bayley AJ, Catton CN, Haycocks T et al. A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. Radiother Oncol 2004;70:37–44.

    Article  PubMed  Google Scholar 

  3. Boehmer D, Kuczer D, Badakhshi H et al. Influence of organ at risk definition on rectal dose-volume histograms in patients with prostate cancer undergoing external-beam radiotherapy. Strahlenther Onkol 2006;182:277–282.

    Article  PubMed  Google Scholar 

  4. Boehmer D, Maingon P, Poortmans P et al. EORTC radiation oncology group. Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol 2006;79:259–269.

    Article  PubMed  Google Scholar 

  5. Cambria R, Jereczek-Fossa BA, Cattani F et al. Evaluation of late rectal toxicity after conformal radiotherapy for prostate cancer: a comparison between dose-volume constraints and NTCP use. Strahlenther Onkol 2009;185:384–389.

    Article  PubMed  Google Scholar 

  6. Cheung P, Sixel K, Morton G et al. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer. Int Radiat Oncol Biol Phys 2005;62:418–425.

    Article  Google Scholar 

  7. Dawson LA, Mah K, Franssen E et al. Target position variability throughout prostate radiotherapy. Int J Radiat Oncol Biol Phy 1998;42:1155–1161.

    Article  CAS  Google Scholar 

  8. Deurloo KE, Steenbakkers RJ, Zijp LJ et al. Quantification of shape variation of prostate and seminal vesicles during external beam radiotherapy. Int J Radiat Oncol Biol Phys 2005;61:228–238.

    Article  PubMed  Google Scholar 

  9. Greco C, Mazzetta C, Cattani C et al. Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer. Radiot Oncol 2003;69:215–222.

    Article  Google Scholar 

  10. Guckenberger M, Ok S, Polat B et al. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 2010;186:535–543.

    Article  PubMed  Google Scholar 

  11. ICRU report 62. Prescribing, Recording and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements, 2009.

  12. Jani AB, Hand CM, Pelizzari CA et al. Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis. BMC Cancer 2003;3:16.

    Article  PubMed  Google Scholar 

  13. Jereczek-Fossa BA, Cattani F, Garibaldi C et al. Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer. Strahlenther Onkol 2007;183:610–616.

    Article  PubMed  Google Scholar 

  14. Jereczek-Fossa BA, Vavassori A, Fodor C et al. Dose escalation for prostate cancer using the three-dimensional conformal dynamic arc technique: analysis of 542 consecutive patients. Int J Radiat Oncol Biol Phys 2008;71:784–794.

    Article  PubMed  Google Scholar 

  15. Liang J, Wu Q, Yan D. The role of seminal vesicle motion in target margin assessment for on line image-guided radiotherapy for the prostate cancer. Int J Radiation Oncology Biol Phy 2009;73:935–943.

    Article  Google Scholar 

  16. Michalski JM, Purdy JA, Winter K et al. Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int J Radiat Oncol Biol Phys 2000;46:391–402.

    Article  PubMed  CAS  Google Scholar 

  17. Michalski JM, Winter K, Purdy JA et al. Update of toxicity following 3D radiation therapy for prostate cancer on RTOG 9406. Int J Radiat Oncol Biol Phys 2000;48(suppl):233.

    Google Scholar 

  18. Miralbell R, Ozsoy O, Pugliesi A et al. Dosimetric implications of changes in patient repositioning and organ motion in conformal radiotherapy for prostate cancer. Radiother Oncol 2003;66:197–202.

    Article  PubMed  Google Scholar 

  19. Moiseenko V, Liu M, Kristensen S et al. Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J Appl Clin Med Phy 2006;8:55–68.

    Article  Google Scholar 

  20. Nakamura N, Shikama N, Takahashi O et al. Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 2010;186:637–642.

    Article  PubMed  Google Scholar 

  21. O’Doherty UM, McNair HA, Norman AR et al. Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 2006;79:335–340.

    Article  PubMed  Google Scholar 

  22. O’Neill L, Armstrong J, Buckney S et al. A phase II trial for the optimisation of treatment position in the radiation therapy of prostate cancer. Radiother Oncol 2008;88:61–66.

    Article  PubMed  Google Scholar 

  23. Peeters STH, Hoogeman MS, Heemsbergen WD et al. Volume and hormonal effects for acute side effects of rectum and bladder during conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2005;63:1142–1152.

    Article  PubMed  Google Scholar 

  24. Pinkawa M, Asadpour B, Gagel B et al. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int J Radiat Oncol Biol Phys 2006;64:856–861.

    Article  PubMed  Google Scholar 

  25. Pinkawa M, Asadpour B, Siluschek J et al. Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder. Radiother Oncol 2007;83:163–167.

    Article  PubMed  Google Scholar 

  26. Pinkawa M, Fischedick K, Asadpour B et al. Low-grade toxicity after conformal radiation therapy for prostate cancer-impact of bladder volume. Int J Radiat Oncol Biol Phys 2006;64:835–841.

    Article  PubMed  Google Scholar 

  27. Radiation therapy oncology group. RTOG 0126 (10/18/04). A phase III randomized study of high dose 3D-CRT/IMRT versus standard dose. 3D-CRT/IMRT in patients treated for localized prostate cancer. 2004 (Protocol).

  28. Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol 2005;15:136–145.

    Article  PubMed  Google Scholar 

  29. Sanguineti G, Endres EJ, Sormani MP et al. Dosimetric predictors of diarrhea during radiotherapy for prostate cancer. Strahlenther Onkol 2009;185:390–396.

    Article  PubMed  Google Scholar 

  30. Seddon B, Bidmead M, Wilson J et al. Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial. Radiother Oncol 2000;56:73–83.

    Article  PubMed  CAS  Google Scholar 

  31. Stam MR, van Lin EN, van der Vight LP et al. Bladder filling variation during radiation treatment of prostate cancer: can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling? Int J Radiat Oncol Biol Phys 2006;65:371–377.

    Article  PubMed  Google Scholar 

  32. Stroom JC, Heijmen BJM. Limitations of the planning organ at risk volume (PRV) concept. Int J Radiat Oncol Biol Phys 2006;66:279–286.

    Article  PubMed  Google Scholar 

  33. Tsai CL, Wu JK, Wang CW et al. Using cone-beam computed tomography to evaluate the impact of bladder filling status on target position in prostate radiotherapy. Strahlenther Onkol 2009;185:588–595.

    Article  PubMed  Google Scholar 

  34. van der Wielen GJ, Mutanga TF, Incrocci L. Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers. Int J Radiat Oncol Biol Phys 2008;72:1604–1611.

    Article  PubMed  Google Scholar 

  35. van Tol-Geerdink JJ, Stalmeier PF, Pasker-De Jong PCM et al. Systematic review of the effect of radiation dose on tumor control and morbidity in the treatment of prostate cancer by 3D-CRT. Int J Radiat Oncol Biol Phys 2006;64:534–543.

    Article  PubMed  Google Scholar 

  36. Vargas C, Kestin LL, Krauss D et al. Phase II dose escalation study of image-guided adaptive radiotherapy for prostate cancer: se of dose-volume constraints to achieve rectal isotoxicity. Int J Radiat Oncol Biol Phys 2005;63:141–149.

    Article  PubMed  Google Scholar 

  37. Wachter S, Gerstner N, Goldner G et al. Rectal sequelae after conformal radiotherapy of prostate cancer: dose-volume histograms as predictive factors. Radiother Oncol 2001;59:65–70.

    Article  PubMed  CAS  Google Scholar 

  38. Zelefsky MJ, Crean D, Mageras GS et al. Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol 1999;50:225–234.

    Article  PubMed  CAS  Google Scholar 

  39. Zelefsky MJ, Yamada Y, Fuks Z et al. Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008;1:1028–1033.

    Article  Google Scholar 

  40. Zellars RC, Roberson PL, Strawderman M et al. Prostate position late in the course of external beam therapy: patterns and predictors. Int J Radiat Oncol Biol Phys 2000;47:655–660.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Cambria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambria, R., Jereczek-Fossa, B.A., Zerini, D. et al. Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol. Strahlenther Onkol 187, 799–805 (2011). https://doi.org/10.1007/s00066-011-2259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-2259-x

Key Words

Schlüsselwörter

Navigation