Skip to main content

Advertisement

Log in

IMRT of prostate cancer

A comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization

IMRT des Prostatakarzinoms. Ein Vergleich der Fluenzoptimierung mit anschließender Segmentierung und der „direct step-and-shoot“-Optimierung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Intensity-modulated radiation therapy (IMRT) has shown its superiority to three-dimensional conformal radiotherapy in the treatment of prostate cancer. Different optimization algorithms are available: algorithms which first optimize the fluence followed by a sequencing (IM), and algorithms which involve the machine parameters directly in the optimization process (DSS). The aim of this treatment-planning study is to compare both of them regarding dose distribution and treatment time.

Patients and Methods:

Ten consecutive patients with localized prostate cancer were enrolled for the planning study. The planning target volume and the rectum volume, urinary bladder and femoral heads as organs at risk were delineated. Average doses, the target dose homogeneity H, D5, D95, monitor units per fraction, and the number of segments were evaluated.

Results:

While there is only a small difference in the mean doses at rectum and bladder, there is a significant advantage for the target dose homogeneity in the DSS-optimized plans compared to the IM-optimized ones. Differences in the monitor units (nearly 10% less for DSS) and the number of segments are also statistically significant and reduce the treatment time.

Conclusion:

Particularly with regard to the tumor control probability, the better homogeneity of the DSS-optimized plans is more profitable. The shorter treatment time is an improvement regarding intrafractional organ motion. The DSS optimizer results in a higher target dose homogeneity and, simultaneously, in a lower number of monitor units. Therefore, it should be preferred for IMRT of prostate cancer.

Hintergrund und Ziel:

Die intensitätsmodulierte Strahlentherapie (IMRT) hat ihre Überlegenheit gegenüber der dreidimensionalen konformalen Strahlentherapie in der Behandlung des Prostatakarzinoms gezeigt. Verschiedene Optimierungsalgorithmen stehen zur Verfügung: Algorithmen, die erst die Fluenz optimieren und anschließend eine Segmentierung durchführen (IM), und Algorithmen, die die Maschinenparameter direkt in den Optimierungsprozess integrieren (DSS). Ziel dieser Planungsstudie ist es, beide hinsichtlich Dosisverteilung und Bestrahlungszeit zu vergleichen.

Patienten und Methodik:

In die Planungsstudie wurden zehn aufeinanderfolgende Patienten mit lokalisiertem Prostatakarzinom eingeschlossen. Das Planungszielvolumen und als Risikostrukturen das Rektumvolumen, Harnblase und beide Femurköpfe wurden markiert. Die durchschnittliche Dosis in den Risikoorganen, die Homogenität im Zielvolumen, D5, D95, die Monitoreinheiten pro Fraktion und die mittlere Segmentzahl wurden ermittelt.

Ergebnisse:

Während nur ein kleiner Unterschied in der mittleren Dosis in Rektum und Blase besteht, findet sich ein signifikanter Vorteil bezüglich der Homogenität im Zielvolumen für die mit „direct step and shoot“ optimierten Pläne gegenüber denjenigen mit Fluenzoptimierung. Die Unterschiede bei den Monitoreinheiten (fast 10% weniger für den DSS-optimierten Plan) und der Segmentzahl sind ebenfalls statistisch signifikant.

Schlussfolgerung:

Insbesondere im Hinblick auf die Tumorkontrollwahrscheinlichkeit ist die größere Homogenität der DSS-optimierten Pläne vorteilhafter. Die kürzere Behandlungszeit stellt eine Verbesserung in Bezug auf intrafraktionelle Organbewegung dar. Der DSS-Optimierer führt zu einer besseren Homogenität im Zielvolumen bei einer reduzierten Anzahl von Monitoreinheiten. Deshalb sollte er für die IMRT des Prostatakarzinoms bevorzugt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Madyan Y, Wertz HJ, Bogulla R, et al. Adaptive radiotherapy of prostate cancer. Strahlenther Onkol 2007;183:Special Issue 2:45–6.

    Google Scholar 

  2. Adams EJ, Convery DJ, Cosgrove V, et al. Clinical implementation of dynamic and step-and-shoot IMRT to treat prostate cancer with high risk of pelvic lymph node involvement. Radiother Oncol 2004;70:1–10.

    Article  PubMed  Google Scholar 

  3. Adamson J, Wu Q. Prostate intrafraction motion evaluation using kV fluoroscopy during treatment delivery: a feasibility and accuracy study. Med Phys 2008;35:1793–806.

    Article  PubMed  Google Scholar 

  4. Ahnesjo A, Hardemark B, Isacsson U, et al. The IMRT information process — mastering the degrees of freedom in external beam therapy. Phys Med Biol 2006;51:R381–402.

    Article  PubMed  Google Scholar 

  5. Alber M, Nusslin F. Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery. Phys Med Biol 2001;46:3229–39.

    Article  PubMed  CAS  Google Scholar 

  6. Bos LJ, Damen EM, de Boer RW, et al. Reduction of rectal dose by integration of the boost in the large-field treatment plan for prostate irradiation. Int J Radiat Oncol Biol Phys 2002;52:254–65.

    PubMed  Google Scholar 

  7. Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 2008;18:48–57.

    Article  PubMed  Google Scholar 

  8. Chan LW, Xia P, Gottschalk AR, et al. Proposed rectal dose constraints for patients undergoing definitive whole pelvic radiotherapy for clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;72:69–77.

    PubMed  Google Scholar 

  9. Dobler B, Mai S, Ross C, et al. Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 2006;182:240–6.

    Article  PubMed  Google Scholar 

  10. Dobler B, Pohl F, Bogner L, et al. Comparison of direct machine parameter optimization versus fluence optimization with sequential sequencing in IMRT of hypopharyngeal carcinoma. Radiat Oncol 2007;2:33–9.

    Article  PubMed  Google Scholar 

  11. Georg D, Kroupa B, Georg P, et al. Inverse planning — a comparative intersystem and interpatient constraint study. Strahlenther Onkol 2006;182:473–80.

    Article  PubMed  Google Scholar 

  12. Guckenberger M, Flentje M. Intensity-modulated radiotherapy (IMRT) of localized prostate cancer. Strahlenther Onkol 2007;183:57–62.

    Article  PubMed  Google Scholar 

  13. Guckenberger M, Pohl F, Baier K, et al. Influence of rectum delineation (rectal volume vs. rectal wall) on IMRT treatment planning of the prostate. Strahlenther Onkol 2006;182:721–6.

    Article  PubMed  Google Scholar 

  14. Hardemark B, Liander A, Rehbinder H, et al. Direct machine parameter optimization with RayMachine in Pinnacle. RaySearch White Paper. Stockholm: RaySearch, 2003 (http://www.raysearchlabs.com/upload/Specialists/Solutions/White%20paper%20RayMachine.pdf).

    Google Scholar 

  15. Hysing LB, Skorpen TN, Alber M, et al. Influence of organ motion on conformal vs. intensity-modulated pelvic radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2008;71:1496–503.

    PubMed  Google Scholar 

  16. Jereczek-Fossa B, Cattani F, Garibaldi C, et al. Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer. Strahlenther Onkol 2007;183:610–6.

    Article  PubMed  Google Scholar 

  17. Kupelian PA, Langen KM, Willoughby TR, et al. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol 2008;18:58–66.

    Article  PubMed  Google Scholar 

  18. Kuperman VY, Ventura AM, Sommerfeldt M. Effect of radiation protraction in intensity-modulated radiation therapy with direct aperture optimization: a phantom study. Phys Med Biol 2008;53:3279–92.

    Article  PubMed  CAS  Google Scholar 

  19. Litzenberg DW, Balter JM. Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2006;65:548–53.

    PubMed  Google Scholar 

  20. Matzinger O, Poortmans P, Giraud JY, et al. Quality assurance in the 22991 EORTC ROG trial in localized prostate cancer: dummy run and individual case review. Radiother Oncol 2009;90:285–90.

    Article  PubMed  Google Scholar 

  21. Mock U, Bogner J, Georg D, et al. Comparative treatment planning on localized prostate carcinoma. Strahlenther Onkol 2005;181:448–55.

    Article  PubMed  Google Scholar 

  22. Munbodh R, Jackson A, Bauer J, et al. Dosimetric and anatomic indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for prostate cancer. Med Phys 2008;35:2137–50.

    Article  PubMed  Google Scholar 

  23. Nairz O, Merz F, Deutschmann H, et al. A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients. Strahlenther Onkol 2008;184:663–7.

    Article  PubMed  Google Scholar 

  24. Pinkawa M, Pursch-Lee M, Asadpour B, et al. Image-guided radiotherapy for prostate cancer. Strahlenther Onkol 2008;184:679–85.

    Article  PubMed  Google Scholar 

  25. Polat B, Guenther I, Wilbert J, et al. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 2008;184:668–73.

    Article  PubMed  Google Scholar 

  26. Rapiti E, Fioretta G, Verkooijen HM, et al. Increased risk of colon cancer after external radiation therapy for prostate cancer. Int J Cancer 2008;123:1141–5.

    Article  PubMed  CAS  Google Scholar 

  27. Wertz H, Lohr F, Dobler B, et al. Einfluss von bildgestützter translatorischer Isozentrumskorrektur auf die Dosisverteilung bei 3-D-Konformationsbestrahlung der Prostata. Strahlenther Onkol 2007;183:203–10.

    Article  PubMed  Google Scholar 

  28. Zhu S, Mizowaki T, Norihisa Y, et al. Comparisons of the impact of systematic uncertainties in patient setup and prostate motion on doses to the target among different plans for definitive external-beam radiotherapy for prostate cancer. Int J Clin Oncol 2008;13:54–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Treutwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treutwein, M., Hipp, M., Kölbl, O. et al. IMRT of prostate cancer. Strahlenther Onkol 185, 379–383 (2009). https://doi.org/10.1007/s00066-009-1950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1950-7

Key Words:

Schlüsselwörter:

Navigation