Skip to main content

Advertisement

Log in

Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma

Survivin, ein Zielmolekül zur Modulation der Strahlenempfindlichkeit von Ewing-Sarkomen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Radiotherapy constitutes an essential element in the multimodal therapy of Ewing’s sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing’s sarcoma in vitro.

Material and methods

An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing’s sarcoma cell lines with and without irradiation.

Results

Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation.

Conclusion

Survivin is a radiation-inducible protein in Ewing’s sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing’s sarcoma.

Zusammenfassung

Zielsetzung

Die Strahlentherapie ist ein essenzielles Element in der multimodalen Therapie des Ewing-Sarkoms. Verglichen mit anderen Sarkomen zeigt das Ewing-Sarkom gewöhnlich ein gutes Ansprechen auf die Strahlentherapie. Allerdings gibt es immer wieder Tumoren mit einem strahlenresistenten Phänotyp. Die zugrunde liegenden Mechanismen sind im Detail nicht bekannt. Wir untersuchten hier den Zusammenhang zwischen der Survivin-Expression und der Strahlenempfindlichkeit des Ewing-Sarkoms in vitro.

Material und Methoden

Ein siRNA-basierter Knockdown-Ansatz wurde eingesetzt, um den Einfluss von Survivin auf die Zellproliferation, Doppelstrangbruch-Induktion und -Reparatur, Apoptose und Koloniebildung in 4 Ewing-Sarkom-Zelllinien mit und ohne Bestrahlung zu untersuchen.

Ergebnisse

In allen Zelllinien war die Survivin-Proteinkonzentration und -mRNA nach Bestrahlung dosisabhängig erhöht. Als Ergebnis eines Knockdowns waren bei STA-ET-1-Zellen die Proliferation verringert, strahleninduzierte Doppelstrangbrüche vermehrt und deren Reparatur vermindert. Die Apoptose war unter Knockdown erhöht und stieg weiter in Kombination mit Bestrahlung. Die Fähigkeit, Kolonien zu bilden, war unter Survivin-Knockdown mit zusätzlicher Bestrahlung stark reduziert.

Schlussfolgerung

Survivin ist ein strahleninduzierbares Protein in Ewing-Sarkomen. Seine Herunterregulierung sensibilisiert Zellen gegenüber Bestrahlung. Survivin-Knockdown in Kombination mit Bestrahlung inhibiert die Zellproliferation, die Reparatur und Koloniebildungsfähigkeit und erhöht die Apoptose mehr als die einzelnen Applikationen allein. Daraus könnten sich neue Behandlungsoptionen für die Strahlentherapie des Ewing-Sarkoms ergeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Kushner BH, Meyers PA (2001) How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 19:870–880

    PubMed  CAS  Google Scholar 

  2. Khoury JD (2005) Ewing sarcoma family of tumors. Adv Anat Pathol 12:212–220

    Article  PubMed  Google Scholar 

  3. Braun Y (2005) Characterization of telomerase as therapeutic targt for the treatment of small round blue cell tumors. Dissertation

  4. Sheplan LJ, Juliano JJ (2010) Use of radiation therapy for patients with soft-tissue and bone sarcomas. Cleve Clin J Med 77(Suppl 1):27–29

    Article  Google Scholar 

  5. Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14:5000–5005

    Article  PubMed  CAS  Google Scholar 

  6. Romagnoli M, Seveno C, Bataille R, Barille-Nion S (2008) Survivin in cancerology: molecular aspects and therapeutic applications. Med Sci (Paris) 24:821–827

    Google Scholar 

  7. Pennati M, Folini M, Zaffaroni N (2008) Targeting survivin in cancer therapy. Expert Opin Ther Targets 12:463–476

    Article  PubMed  CAS  Google Scholar 

  8. Altieri DC (2003) Survivin and apoptosis control. Adv Cancer Res 88:31–52

    Article  PubMed  CAS  Google Scholar 

  9. Capalbo G, Dittmann K, Weiss C et al (2010) Radiation-induced survivin nuclear accumulation is linked to DNA damage repair. Int J Radiat Oncol Biol Phys 77:226–234

    Article  PubMed  CAS  Google Scholar 

  10. Abdraboh ME, Gaur RL, Hollenbach AD et al (2011) Survivin is a novel target of CD44-promoted breast tumor invasion. Am J Pathol 179:555–563

    Article  PubMed  CAS  Google Scholar 

  11. Reichert S, Rodel C, Mirsch J et al (2011) Survivin inhibition and DNA double-strand break repair: a molecular mechanism to overcome radioresistance in glioblastoma. Radiother Oncol 101(1):51–58

    Article  PubMed  CAS  Google Scholar 

  12. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  13. Capalbo G, Rodel C, Stauber RH et al (2007) The role of survivin for radiation therapy. Prognostic and predictive factor and therapeutic target. Strahlenther Onkol 183:593–599

    Article  PubMed  Google Scholar 

  14. Yamamoto H, Ngan CY, Monden M (2008) Cancer cells survive with survivin. Cancer Sci 99:1709–1714

    Article  PubMed  CAS  Google Scholar 

  15. Erpolat OP, Gocun PU, Akmansu M et al (2012) High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer. Strahlenther Onkol 188(3)248–254

    Google Scholar 

  16. Weiss C, Romer F von, Capalbo G et al (2009) Survivin expression as a predictive marker for local control in patients with high-risk T1 bladder cancer treated with transurethral resection and radiochemotherapy. Int J Radiat Oncol Biol Phys 47(5):1455–1460

    Article  Google Scholar 

  17. Rodel F, Frey B, Leitmann W et al (2008) Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 71:247–255

    Article  PubMed  Google Scholar 

  18. Pfeifer D, Wallin A, Holmlund B, Sun XF (2009) Protein expression following gamma-irradiation relevant to growth arrest and apoptosis in colon cancer cells. J Cancer Res Clin Oncol 135(11):1583–1592

    Article  PubMed  CAS  Google Scholar 

  19. Andersen MH, Sorensen RB, Schrama D et al (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57:1735–1743

    Article  PubMed  CAS  Google Scholar 

  20. Sprenger T, Rodel F, Beissbarth T et al (2011) Failure of downregulation of survivin following neoadjuvant radiochemotherapy in rectal cancer is associated with distant metastases and shortened survival. Clin Cancer Res 17:1623–1631

    Article  PubMed  CAS  Google Scholar 

  21. Liao CP, Adisetiyo H, Liang M, Roy-Burman P (2010) Cancer stem cells and microenvironment in prostate cancer progression. Horm Cancer 1:297–305

    Article  PubMed  CAS  Google Scholar 

  22. Greve B, Kelsch R, Spaniol K et al (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81(4):248–293 (Epub ahead of print)

    Google Scholar 

  23. Greve B, Dreffke K, Rickinger A et al (2009) Multicentric investigation of ionising radiation-induced cell death as a predictive parameter of individual radiosensitivity. Apoptosis 14:226–235

    Article  PubMed  Google Scholar 

  24. Blattmann C, Oertel S, Thiemann M et al (2012) Suberoylanilide hydroxamic acid affects gammaH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation. Strahlenther Onkol 188:168–176

    Article  PubMed  CAS  Google Scholar 

  25. Erp PE van, Brons PP, Boezeman JB et al (1988) A rapid flow cytometric method for bivariate bromodeoxyuridine/DNA analysis using simultaneous proteolytic enzyme digestion and acid denaturation. Cytometry 9:627–630

    Article  PubMed  Google Scholar 

  26. Kemper B, Carl D, Höink A et al (2006) Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. Proceedings of SPIE 6191:T-1–T-8

    Google Scholar 

  27. Carl D, Kemper B, Wernicke G, Bally G von (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Opt 43:6536–6544

    Article  PubMed  Google Scholar 

  28. Kemper B, Carl D, Schnekenburger J et al (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Opt 11:34005

    Article  PubMed  Google Scholar 

  29. Kemper B, Bauwens A, Vollmer A et al (2010) Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15:036009

    Article  PubMed  Google Scholar 

  30. Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  32. Marusawa H, Matsuzawa S, Welsh K et al (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 22:2729–2740

    Article  PubMed  CAS  Google Scholar 

  33. Dohi T, Xia F, Altieri DC (2007) Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol Cell 27:17–28

    Article  PubMed  CAS  Google Scholar 

  34. Jacob NK, Cooley JV, Shirai K, Chakravarti A (2012) Survivin splice variants are not essential for mitotic progression or inhibition of apoptosis induced by doxorubicin and radiation. Onco Targets Ther 5:7–20

    PubMed  CAS  Google Scholar 

  35. Lens SM, Vader G, Medema RH (2006) The case for Survivin as mitotic regulator. Curr Opin Cell Biol 18:616–622

    Article  PubMed  CAS  Google Scholar 

  36. Kappler M, Bache M, Bartel F et al (2004) Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 11:186–193

    Article  PubMed  CAS  Google Scholar 

  37. Wolanin K, Magalska A, Mosieniak G et al (2006) Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res 4:457–469

    Article  PubMed  CAS  Google Scholar 

  38. Satoh T, Okamoto I, Miyazaki M et al (2009) Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 15:3872–3880

    Article  PubMed  CAS  Google Scholar 

  39. Giaccone G, Zatloukal P, Roubec J et al (2009) Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol 27:4481–4486

    Article  PubMed  CAS  Google Scholar 

  40. Iwasa T, Okamoto I, Suzuki M et al (2008) Radiosensitizing effect of YM155, a novel small-molecule survivin suppressant, in non-small cell lung cancer cell lines. Clin Cancer Res 14:6496–6504

    Article  PubMed  CAS  Google Scholar 

  41. Church DN, Talbot DC (2012) Survivin in solid tumors: rationale for development of inhibitors. Curr Oncol Rep 14:120–128

    Article  PubMed  CAS  Google Scholar 

  42. Weiss C, Romer F von, Capalbo G et al (2009) Survivin expression as a predictive marker for local control in patients with high-risk T1 bladder cancer treated with transurethral resection and radiochemotherapy. Int J Radiat Oncol Biol Phys 74:1455–1460

    Article  PubMed  CAS  Google Scholar 

  43. Shirai K, Suzuki Y, Oka K et al (2009) Nuclear survivin expression predicts poorer prognosis in glioblastoma. J Neurooncol 91:353–358

    Article  PubMed  CAS  Google Scholar 

  44. Maldegem AM van, Hogendoorn PC, Hassan AB (2012) The clinical use of biomarkers as prognostic factors in Ewing sarcoma. Clin Sarcoma Res 2(1):7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Josef-Freitag-Stiftung, Paderborn, Germany. The authors thank Annette van Dülmen, Astrid Kolkmeyer, and Angelika Vollmer for skillful technical assistance. We also acknowledge the contribution of Nadine Koren.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Greve PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greve, B., Sheikh-Mounessi, F., Kemper, B. et al. Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188, 1038–1047 (2012). https://doi.org/10.1007/s00066-012-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0223-z

Keywords

Schlüsselwörter

Navigation