Skip to main content

Advertisement

Log in

Multicentric investigation of ionising radiation-induced cell death as a predictive parameter of individual radiosensitivity

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the present study, the predictive value of ionising radiation (IR)-induced cell death was tested in peripheral blood lymphocytes (PBLs) and their corresponding Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) in an interlaboratory comparison. PBLs and their corresponding LCLs were derived from 15 tumour patients, that were considered clinically radiosensitive based on acute side-effects, and matched controls. Upon coding of the samples, radiosensitivity of the matched pairs was analysed in parallel in three different laboratories by assessing radiation-induced apoptotic and necrotic cell death using annexin V. All participating laboratories detected a dose-dependent increase of apoptosis and necrosis in the individual samples, to a very similar extent. However, comparing the mean values of apoptotic and necrotic levels derived from PBLs of the radiosensitive cohort with the mean values of the control cohort did not reveal a significant difference. Furthermore, within 15 matched pairs, no sample was unambiguously and independently identified by all three participating laboratories to demonstrate in vitro hypersensitivity that matched the clinical hypersensitivity. As has been reported previously, apoptotic and necrotic cell death is barely detectable in immortalised LCL derivatives using low doses of IR. Concomitantly, the differences in apoptosis or necrosis levels found in primary cells of different individuals were not observed in the corresponding LCL derivatives. All participating laboratories concordantly reasoned that, with the methods applied here, IR-induced cell death in PBLs is unsuitable to unequivocally predict the individual clinical radiosensitivity of cancer patients. Furthermore, LCLs do not reflect the physiological properties of the corresponding primary blood lymphocytes with regard to IR-induced cell death. Their value to predict clinical radiosensitivity is thus highly questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Working group (1995) LENT SOMA scales for all anatomic sites. Int J Radiat Oncol Biol Phys 31:1049–1091. doi:10.1016/0360-3016(95)90159-0

  2. Alter BP (2002) Radiosensitivity in Fanconi’s anemia patients. Radiother Oncol 62:345–347. doi:10.1016/S0167-8140(01)00474-1

    Article  PubMed  Google Scholar 

  3. Andreassen CN, Alsner J, Overgaard J (2002) Does variability in normal tissue reactions after radiotherapy have a genetic basis—where and how to look for it? Radiother Oncol 64:131–140. doi:10.1016/S0167-8140(02)00154-8

    Article  PubMed  Google Scholar 

  4. Archambeau JO, Pezner R, Wasserman T (1995) Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys 31:1171–1185. doi:10.1016/0360-3016(94)00423-I

    PubMed  CAS  Google Scholar 

  5. Baumann M (1995) Impact of endogenous and exogenous factors on radiation sequelae. In: Dunst J, Suaer R (eds) Hrsg: late sequelae in oncology. medical radiology, diagnostic imaging and radiation oncology. Springer, Berlin

    Google Scholar 

  6. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  7. Borgmann K, Hoeller U, Nowack S et al (2008) Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. Int J Radiat Oncol Biol Phys 71:256–264. doi:10.1016/j.ijrobp.2008.01.007

    PubMed  Google Scholar 

  8. Cohen JI (2000) Epstein-Barr virus infection. N Engl J Med 343:481–492. doi:10.1056/NEJM200008173430707

    Article  PubMed  CAS  Google Scholar 

  9. Connor J, Bucana C, Fidler IJ et al (1989) Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proc Natl Acad Sci USA 86:3184–3188. doi:10.1073/pnas.86.9.3184

    Article  PubMed  CAS  Google Scholar 

  10. Cooper JS, Fu K, Marks J et al (1995) Late effects of radiation therapy in the head and neck region. Int J Radiat Oncol Biol Phys 31:1141–1164. doi:10.1016/0360-3016(94)00421-G

    PubMed  CAS  Google Scholar 

  11. Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the european organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346. doi:10.1016/0360-3016(95)00060-C

    PubMed  CAS  Google Scholar 

  12. Dikomey E, Borgmann K, Brammer I et al (2003) Molecular mechanisms of individual radiosensitivity studied in normal diploid human fibroblasts. Toxicology 193:125–135. doi:10.1016/S0300-483X(03)00293-2

    Article  PubMed  CAS  Google Scholar 

  13. Dikomey E, Borgmann K, Peacock J et al (2003) Why recent studies relating normal tissue response to individual radiosensitivity might have failed and how new studies should be performed. Int J Radiat Oncol Biol Phys 56:1194–1200. doi:10.1016/S0360-3016(03)00188-3

    Article  PubMed  Google Scholar 

  14. Henderson S, Huen D, Rowe M et al (1993) Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA 90:8479–8483. doi:10.1073/pnas.90.18.8479

    Article  PubMed  CAS  Google Scholar 

  15. Henery S, George T, Hall B et al (2008) Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: a comparison with standard photometric methods. Apoptosis 13:1054–1063. doi:10.1007/s10495-008-0227-4

    Article  PubMed  Google Scholar 

  16. Huber R, Braselmann H, Bauchinger M (1989) Screening for interindividual differences in radiosensitivity by means of the micronucleus assay in human lymphocytes. Radiat Environ Biophys 28:113–120. doi:10.1007/BF01210295

    Article  PubMed  CAS  Google Scholar 

  17. Konemann S, Bolling T, Kolkmeyer A et al (2005) Heterogeneity of radiation induced apoptosis in Ewing tumor cell lines characterized on a single cell level. Apoptosis 10:177–184. doi:10.1007/s10495-005-6072-9

    Article  PubMed  CAS  Google Scholar 

  18. Lee JM, Lee KH, Farrell CJ et al (2004) EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol 78:12694–12697. doi:10.1128/JVI.78.22.12694-12697.2004

    Article  PubMed  CAS  Google Scholar 

  19. MacKay RI, Niemierko A, Goitein M et al (1998) Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. Radiother Oncol 46:215–216. doi:10.1016/S0167-8140(97)00179-5

    Article  PubMed  CAS  Google Scholar 

  20. Meijer AE, Zhivotovsky B, Lewensohn R (1999) Epstein-Barr virus-transformed lymphoblastoid cell lines of ataxia telangiectasia patients are defective in X-ray-induced apoptosis. Int J Radiat Biol 75:709–716. doi:10.1080/095530099140041

    Article  PubMed  CAS  Google Scholar 

  21. Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73:320–326. doi:10.1007/BF00279094

    Article  PubMed  CAS  Google Scholar 

  22. Okada M, Goto M, Furuichi Y et al (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21:235–239

    PubMed  CAS  Google Scholar 

  23. Okubo M, Tsurukubo Y, Higaki T et al (2001) Clonal chromosomal aberrations accompanied by strong telomerase activity in immortalization of human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Genet Cytogenet 129:30–34. doi:10.1016/S0165-4608(01)00420-4

    Article  PubMed  CAS  Google Scholar 

  24. Pavy JJ, Denekamp J, Letschert J et al (1995) EORTC late effects working group. Late effects toxicity scoring: the SOMA scale. Radiother Oncol 35:11–15. doi:10.1016/0167-8140(95)97448-M

    Article  PubMed  CAS  Google Scholar 

  25. Riesenbeck D, Dorr W (1998) Documentation of radiation-induced oral mucositis. scoring systems. Strahlenther Onkol 174(Suppl 3):44–46

    PubMed  Google Scholar 

  26. Riesenbeck D, Dorr W, Feyerabend T et al (1998) Photographic documentation of acute radiation-induced side effects of the oral mucosa. Strahlenther Onkol 174(Suppl 3):40–43

    PubMed  Google Scholar 

  27. Rubin P, Constine LSIII, Fajardo LF et al (1995) EORTC late effects working group. Overview of late effects normal tissues (LENT) scoring system. Radiother Oncol 35:9–10. doi:10.1016/0167-8140(95)97447-L

    Article  PubMed  CAS  Google Scholar 

  28. Sagan D, Mortl S, Muller I et al (2007) Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts. Apoptosis 12:753–767. doi:10.1007/s10495-006-0021-0

    Article  PubMed  CAS  Google Scholar 

  29. Satoh M, Yasuda T, Higaki T et al (2003) Innate apoptosis of human B lymphoblasts transformed by Epstein-Barr virus: modulation by cellular immortalization and senescence. Cell Struct Funct 28:61–70. doi:10.1247/csf.28.61

    Article  PubMed  Google Scholar 

  30. Schmitz A, Bayer J, Dechamps N et al (2007) Heritability of susceptibility to ionizing radiation-induced apoptosis of human lymphocyte subpopulations. Int J Radiat Oncol Biol Phys 68:1169–1177. doi:10.1016/j.ijrobp.2007.03.050

    PubMed  CAS  Google Scholar 

  31. Schmitz A, Bayer J, Dechamps N et al (2003) Intrinsic susceptibility to radiation-induced apoptosis of human lymphocyte subpopulations. Int J Radiat Oncol Biol Phys 57:769–778. doi:10.1016/S0360-3016(03)00637-0

    PubMed  Google Scholar 

  32. Severin E, Greve B, Pascher E et al (2006) Evidence for predictive validity of blood assays to evaluate individual radiosensitivity. Int J Radiat Oncol Biol Phys 64:242–250. doi:10.1016/j.ijrobp.2005.06.020

    PubMed  Google Scholar 

  33. Shi YQ, Li L, Sanal O et al (2001) High levels of delayed radiation-induced apoptosis observed in lymphoblastoid cell lines from ataxia-telangiectasia patients. Int J Radiat Oncol Biol Phys 49:555–559. doi:10.1016/S0360-3016(00)01478-4

    Article  PubMed  CAS  Google Scholar 

  34. Sugimoto M, Tahara H, Ide T et al (2004) Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res 64:3361–3364. doi:10.1158/0008-5472.CAN-04-0079

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi T, Kawabe T, Okazaki Y et al (2003) In vitro establishment of tumorigenic human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. DNA Cell Biol 22:727–735. doi:10.1089/104454903770946700

    Article  PubMed  CAS  Google Scholar 

  36. Utsugi T, Schroit AJ, Connor J et al (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    PubMed  CAS  Google Scholar 

  37. Zimmermann JS, Kumpf L, Kimmig B (1998) Variability of individual normal tissue radiation sensitivity. an international empirical evaluation of endogenous and exogenous response modifiers. Strahlenther Onkol 174(Suppl 3):16–19

    PubMed  Google Scholar 

  38. Zou P, Kawada J, Pesnicak L et al (2007) Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81:10029–10036. doi:10.1128/JVI.02241-06

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Annette van Dülmen and Gerlind Bellmann for excellent technical assistance. The project was financed by the Federal Office for Radiation Protection (“Bundesamt für Strahlenschutz”), Department of Radiation Protection and Health, Oberschleissheim, Germany (StSch 4467).

Authors’ Contribution and Conflict of Interest

The authors declare that they all participated in the study and that they have seen and approved the final version. They declare no conflict of interest or financial relationship influencing the conclusions of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Greve.

Additional information

The authors B. Greve, K. Dreffke and A. Rickinger are treated as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greve, B., Dreffke, K., Rickinger, A. et al. Multicentric investigation of ionising radiation-induced cell death as a predictive parameter of individual radiosensitivity. Apoptosis 14, 226–235 (2009). https://doi.org/10.1007/s10495-008-0294-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0294-6

Keywords

Navigation