Skip to main content

Advertisement

Log in

Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation

Histon-Deacetylasehemmer SAHA beeinflusst die γH2AX-Expression in Sarkom- und Normalgewebszelllinien nach Bestrahlung

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Osteosarcoma and atypical teratoid rhabdoid tumors are tumor entities with varying response to common standard therapy protocols. Histone acetylation affects chromatin structure and gene expression which are considered to influence radiation sensitivity. The aim of this study was to investigate the effect of the combination therapy with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and irradiation on atypical teratoid rhabdoid tumors and osteosarcoma compared to normal tissue cell lines.

Methods

Clonogenic assay was used to determine cell survival. DNA double-strand breaks (DSB) were examined by pulsed-field electrophoresis (PFGE) as well as by γH2AX immunostaining involving flow cytometry, fluorescence microscopy, and immunoblot analysis.

Results

SAHA lead to an increased radiosensitivity in tumor but not in normal tissue cell lines. γH2AX expression as an indicator for DSB was significantly increased when SAHA was applied 24 h before irradiation to the sarcoma cell cultures. In contrast, γH2AX expression in the normal tissue cell lines was significantly reduced when irradiation was combined with SAHA. Analysis of initial DNA fragmentation and fragment rejoining by PFGE, however, did not reveal differences in response to the SAHA pretreatment for either cell type.

Conclusion

SAHA increases radiosensitivity in tumor but not normal tissue cell lines. The increased H2AX phosphorylation status of the SAHA-treated tumor cells post irradiation likely reflects its delayed dephosphorylation within the DNA damage signal decay rather than chromatin acetylation-dependent differences in the overall efficacy of DSB induction and rejoining. The results support the hypothesis that combining SAHA with irradiation may provide a promising strategy in the treatment of solid tumors.

Zusammenfassung

Zielsetzung

Osteosarkome und atypische teratoide Rhabdoidtumore sind Tumorentitäten mit sehr variablem Ansprechen auf aktuelle Standardtherapien. Die Acetylierung von Histonen beeinflusst die Regulierung von Chromatinstruktur und Genexpression, beides Parameter, die eine wichtige Rolle bei der Strahlenempfindlichkeit von Zellen bzw. Geweben spielen. Die vorliegende Studie untersucht den Effekt des Histon-Deacetylasehemmers SAHA in Kombination mit einer Strahlentherapie auf die o.g. Tumorentitäten im Vergleich zu Normalgewebszelllinien (Osteoblasten, Fibroblasten) in vitro.

Methoden

Das zelluläre Überleben wurde im klonogenen Assay, DNA-Doppelstrangbrüche (DSB) mittels Durchflusszytometrie, Mikroskopie, Immunoblot und Pulsfeld-Gelelektrophorese (PFGE) untersucht.

Ergebnisse

SAHA führte zu einer signifikant erhöhten Strahlenempfindlichkeit in den Tumor-zelllinien, nicht aber in den Normalgewebszellen. Die γH2AX-Expression als Marker für DSB erhöhte sich signifikant, wenn die Tumorzellen 24 h vor der Bestrahlung SAHA ausgesetzt wurden. Im Gegensatz dazu kam es in den Normalgewebszellen zu einer signifikant niedrigeren γH2AX-Expression, wenn die Zellen nicht nur bestrahlt, sondern kombiniert mit SAHA behandelt wurden. Die Analyse der initialen DNA-Fragmentierung bzw. deren Reparatur mittels PFGE zeigte jedoch keine Unterschiede zwischen SAHA- und nicht-SAHA-behandelten Zellen, sowohl in den Normalgewebs- als auch in den Tumorzelllinien.

Schlussfolgerung

SAHA führt zu einer Radiosensitivierung von Tumor-, nicht aber von Normalgewebszellen. Der gesteigerte H2AX-Phosphorylierungsstatus nach Bestrahlung bei den SAHA-behandelten Tumorzellen scheint am ehesten durch eine verzögerte Dephosphorylierung nach DNA-Schädigung bedingt zu sein, weniger durch eine Chromatinacetylierungs-modifizierte DSB-Induktion oder Reparatur. Die Ergebnisse unterstützen die Hypothese, dass die Kombination von Bestrahlung mit dem Histon-Deacetylasehemmer SAHA eine neue, potenziell entwicklungsfähige Strategie in der Behandlung von soliden Tumoren darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Baschnagel A, Russo A, Burgan WE et al (2009) Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 8:1589–1595

    Article  PubMed  CAS  Google Scholar 

  2. Biade S, Stobbe CC, Boyd JT et al (2001) Chemical agents that promote chromatin compaction radiosensitize tumour cells. Int J Radiat Biol 77:1033–1042

    Article  PubMed  CAS  Google Scholar 

  3. Blattmann C, Oertel S, Ehemann V et al (2010) Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 78:237–245

    Article  PubMed  CAS  Google Scholar 

  4. Camphausen K, Burgan W, Cerra M et al (2004) Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 64:316–321

    Article  PubMed  CAS  Google Scholar 

  5. Chen X, Wong J, Wong P et al (2011) Low dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol Cancer Res 9:448–461

    Article  PubMed  CAS  Google Scholar 

  6. Chinnaiyan P, Vallabhaneni G, Armstrong E et al (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 62:223–229

    Article  PubMed  CAS  Google Scholar 

  7. Chung YL, Lee MY, Pui NN (2009) Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 30:1387–1397

    Article  PubMed  CAS  Google Scholar 

  8. Furchert SE, Lanvers-Kaminsky C, Jürgens H et al (2007) Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 120:1787–1794

    Article  PubMed  CAS  Google Scholar 

  9. Huang X, Darzynkiewicz Z (2006) Cytometric assessment of histone H2AX phosphorylation. Methods Mol Biol 314:73–80

    Article  PubMed  CAS  Google Scholar 

  10. Jeggo PA (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150:80–91

    Article  Google Scholar 

  11. Kaatsch P, Debling D, Blettner M et al (2009) Second malignant neoplasms after childhood cancer in Germany—results from the long-term follow-up of the German childhood cancer registry. Strahlenther Onkol 185:8–10

    Article  PubMed  Google Scholar 

  12. Kappler M, Taubert H, Bartel F et al (2005) Radiosensitization after a combined treatment of survivin siRNA and irradiation, is correlated with the activation of caspases 3 and 7 in a wt-p53 sarcoma cell line, but not in a mt-p53 sarcoma cell line. Oncol Rep 13:167–172

    PubMed  CAS  Google Scholar 

  13. Karagiannis TC, Kn H, El-Osta A (2006) The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics 1:131–137

    Article  PubMed  Google Scholar 

  14. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  15. Klenke FM, Abdollahi A, Bischof M et al (2011) Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell lung cancer via antiangiogenesis in vivo. Strahlenther Onkol 187:45–51

    Article  PubMed  Google Scholar 

  16. Lee M-J, Kim YS, Kummar S et al (2008) Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 20:639–649

    Article  PubMed  CAS  Google Scholar 

  17. Levesque AA, Fanous AA, Poh A et al (2008) Defective p53 signaling in p53 wild-type tumors attenuates p21waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate DNA damage-induced S and G2 arrest. Mol Cancer Ther 7:252–262

    Article  PubMed  CAS  Google Scholar 

  18. MacPhail SH, Banath JP, Yu Y et al (2003) Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res 159:759–767

    Article  PubMed  CAS  Google Scholar 

  19. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  PubMed  CAS  Google Scholar 

  20. Minucci S, Pelicci P (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  21. Munshi A, Tanaka T, Hobbs ML et al (2006) Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 5:1967–1974

    Article  PubMed  CAS  Google Scholar 

  22. Niermann KJ, Moretti L, Giacalone NJ (2011) Enhanced radiosensitivity of androgen-resistant prostate cancer: AZD1152-mediated aurora kinase B inhibition. Radiat Res 175:444–451

    Article  PubMed  CAS  Google Scholar 

  23. O’Connor OA, Heaney ML, Schwartz L et al (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 24:166–173

    Article  Google Scholar 

  24. Patties I, Jahns J, Hildebrandt G et al (2009) Additive effects of 5-aza-2’-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines. Strahlenther Onkol 185:331–338

    Article  PubMed  Google Scholar 

  25. Paull TT, Rogakou EP, Yamazaki V et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  26. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59:928–942

    Article  PubMed  Google Scholar 

  27. Purrucker JC, Fricke A, Ong MF et al (2010) HDAC inhibition radiosensitizes human normal tissue cells and reduces DNA Double-Strand Break repair capacity. Oncol Rep 23:263–269

    PubMed  CAS  Google Scholar 

  28. Rudat V, Bachmann N, Kuepper JH et al (2001) Overexpression of the DNA-binding domain of poly (ADP-ribose) polymerase inhibits rejoining of ionizing radiation-induced DNA-double-strand breaks. Int J Radiat Biol 77:303–307

    Article  PubMed  CAS  Google Scholar 

  29. Weiss C, Grabenbauer GG, Sauer R et al (2003) Significant increase in residual DNA damage as a possible mechanism of radiosensitization by gemcitabine. Strahlenther Onkol 179:93–98

    Article  PubMed  Google Scholar 

  30. Welte B, Suhr P, Bootke D et al (2010) Second malignancies in high-dose areas of previous tumor radiotherapy. Strahlenther Onkol 186:174–179

    Article  PubMed  Google Scholar 

  31. Wolff HA, Hennies S, Herrmann MK et al (2011) Comparison of the micronucleus and chromosome aberration techniques for the documentation of cytogenetic damage in radiochemotherapy-treated patients with rectal cancer. Strahlenther Onkol 187:52–58

    Article  PubMed  Google Scholar 

  32. Zhang Y, Jung M, Dritschilo A et al (2005) Enhancement of radiation sensitivity of human squamous cells by histone deacetylase inhibition. Radiat Res 163:488–493

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Sylvia Trinh, Ludmilla Frick, and Gabriele Becker for their excellent technical work. This work was supported by the Dietmar Hopp Stiftung, Germany.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Blattmann M.D..

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blattmann, C., Oertel, S., Thiemann, M. et al. Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation. Strahlenther Onkol 188, 168–176 (2012). https://doi.org/10.1007/s00066-011-0028-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0028-5

Keywords

Schlüsselwörter

Navigation