Skip to main content
Log in

Cystatin C – A Fast and Reliable Biomarker for Glomerular Filtration Rate in Head and Neck Cancer Patients

Cystatin C – ein schneller und zuverlässiger Marker zur Bestimmung der glomerulären Filtrationsrate vor einer cisplatinhaltigen Chemotherapie bei Patienten mit Kopf-Hals-Tumoren

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

Determination of renal function is a prerequisite for planning therapy in cancer patients. Limitations of creatinine as marker for the glomerular filtration rate (GFR) led to the proposal of cystatin C as a more accurate biomarker especially in mild renal insufficiency or in patients with low muscle mass. We compared the accuracy of cystatin C- and creatinine-based equations to estimate GFR in head and neck cancer (HNC) patients receiving platinum-based radiochemotherapy.

Patients and Methods:

The study population consisted of 52 HNC patients (GFR range, 37–105 mL/min/1.73 m2 complemented by 17 patients with known renal insufficiency (GFR range, 10–60 mL/min/1.73 m2). Intraclass correlation coefficients were calculated between the reference method (51)Cr-EDTA clearance and estimated GFR by creatinine clearance and equations based on creatinine (Cockroft-Gault, modification of diet in renal disease (MDRD), Wright) or cystatin C (Larsson, Dade-Behring, Hoek). In addition, sensitivity and specificity to discriminate GFR > 60 mL/min/1.73 m2 were evaluated by receiver operating characteristic curve (ROC).

Results:

The highest correlation coefficients were found for the cystatin C-based estimates in comparison with creatinine-based estimates or creatinine clearance, even though Bland-Altman plots revealed GFR overestimation for all equations tested. The cystatin C-based Hoek formula exhibited the highest overall precision and accuracy. GFR of < 60 mL/min/1.73 m2 was assumed as a cut-off for chemotherapy. ROC analyses revealed the highest AUC to predict a GFR > 60 mL/min/1.73 m2 for the creatinine-based Wright formula, closely followed by the MDRD formula and cystatin C-based equations of Larsson, Dade-Behring, and Hoek.

Conclusion:

Cystatin C-based GFR estimates showed the overall strongest correlation to the reference method. Thus, we recommend cystatin C for GFR estimation in HNC patients as an alternative method to the estimated creatinine clearance in clinical practice.

Zusammenfassung

Zielsetzung:

Bei Tumorpatienten ist die exakte Bestimmung der Nierenfunktion eine wichtige Voraussetzung für die individuelle Therapieplanung. Die Aussagefähigkeit des Serumkreatinins als Marker der glomerulären Filtrationsrate (GFR) ist jedoch limitiert aufgrund seiner Abhängigkeit von der Muskelmasse sowie fehlendem Anstieg der Serumkonzentration bei einer GFR > 60 ml/ min/1,73 m2. Cystatin C wird als sensitiverer Parameter für das Vorliegen einer Niereninsuffizienz in den Frühstadien sowie bei Muskelschwachen Patienten diskutiert. In der vorliegenden Studie wurde die Präzision von Cystatin-C-basierten sowie Kreatinin-basierten Formeln zur Berechung der GFR in Kopf-Hals-Tumorpatienten verglichen.

Patienten und Methodik:

Die Studienkohorte bestand aus 52 Kopf-Hals-Tumorpatienten (GFR 37–105 mL/min/1,73 m2) sowie 17 Patienten mit bekannter Niereninsuffizienz Stadium 3–5 (GFR 10–60 mL/min/1,73 m2). Es wurde der Intra-Class-Correlation factor berechnet zwischen der Referenzmethode (51)Cr-EDTA-Clearance und der Kreatinin-Clearance, den Kreatinin-basierten Formeln (Cockroft-Gault, Modified Diet in Renal Disease, Wright) und den Cystatin-C-basierten Formeln (Larsson, Dade-Behring, Hoek) zur GFR-Berechnung. Zusätzlich ermittelten wir Sensitivität und Spezifität der verschiedenen Clearance-Bestimmungen zur Erkennung einer GFR > 60 ml/min/1,73 m2 mittels Receiver Operating Characteristic Curve (ROC).

Ergebnisse:

Die beste Korrelation zur Referenzmethode wurde für die Cystatin-C-basierten Formeln zur GFR-Bestimmung im Vergleich zu Kreatinin-basierten Formeln oder der Kreatinin-Clearance ermittelt. Jedoch zeigte der Bland-Altman-Plot, dass im Vergleich zur Referenzmethode alle Formeln – sowohl Cystatin-C- als auch Kreatinin-basiert – die Nierenfunktion überschätzen. Die höchste Genauigkeit und Präzision wurde bei der Hoek-Formel beobachtet. Da eine GFR < 60 ml/min/1,73 m2 häufig als Grenze angesehen wird zur Durchführung einer Chemotherapie, ermittelten wir die Präzision, mit der die verschiedenen GFR-Bestimmungen dies für den Einzelnen voraussagen konnten. Bei der ROC-Analyse zeigte die Kreatinin-basierte Formel nach Wright die höchste Area Under the Curve, dicht gefolgt von der Modified-Diet-in-Renal-Disease-Formel und den Cystatin-C-basierten Formeln nach Larsson, Dade-Behring und Hoek.

Schlussfolgerung:

Die Cystatin-C-basierten Formeln zur GFR-Berechnung zeigten insgesamt die beste Präzision und Korrelation zur Referenzmethode in Kopf-Hals-Tumorpatienten. Daher empfehlen wir Cystatin-C-basierte Formeln zur GFR-Berechnung im klinischen Alltag bei diesen Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benohr P, Grenz A, Hartmann JT, et al. Cystatin C–a marker for assessment of the glomerular filtration rate in patients with cisplatin chemotherapy. Kidney Blood Press Res 2006;29:32–5.

    Article  PubMed  CAS  Google Scholar 

  2. Berger B, Belka C, Weinmann M, et al. Reirradiation with alternating docetaxel-based chemotherapy for recurrent head and neck squamous cell carcinoma: update of a single-center prospective phase II protocol. Strahlenther Onkol 2010;186:255–61.

    Article  PubMed  Google Scholar 

  3. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8:135–60.

    Article  PubMed  CAS  Google Scholar 

  4. Bolke E, Gerber PA, Lammering G, et al. Development and management of severe cutaneous side effects in head-and-neck cancer patients during concurrent radiotherapy and cetuximab. Strahlenther Onkol 2008;184:105–10.

    Article  PubMed  Google Scholar 

  5. Bolke E, Peiper M, Gripp S. Chemotherapy in unresectable head and neck cancer. N Engl J Med 2008;358:1075; author reply 1075.

    Article  PubMed  Google Scholar 

  6. Brochner-Mortensen J, Rodbro P. Optimum time of blood sampling for determination of glomerular filtration rate by single-injection [51Cr]EDTA plasma clearance. Scand J Clin Lab Invest 1976;36:795–800.

    Article  PubMed  CAS  Google Scholar 

  7. Chew JS, Saleem M, Florkowski CM, et al. Cystatin C-a paradigm of evidence based laboratory medicine. Clin Biochem Rev 2008;29:47–62.

    PubMed  Google Scholar 

  8. Chew JS, Saleem M, Florkowski CM, et al. Estimating renal function in oncology patients using cystatin C-based equations. Clin Oncol (R Coll Radiol) 2009;21:425–6.

    CAS  Google Scholar 

  9. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.

    Article  PubMed  CAS  Google Scholar 

  10. Driemel O, Ettl T, Kolbl O, et al. Outcome and histopathologic regression in oral squamous cell carcinoma after preoperative radiochemotherapy. Strahlenther Onkol 2009;185:296–302.

    Article  PubMed  Google Scholar 

  11. Ebert E, Werle B, Julke B, et al. Expression of cysteine protease inhibitors stefin A, stefin B, and cystatin C in human lung tumor tissue. Adv Exp Med Biol 1997;421:259–65.

    PubMed  CAS  Google Scholar 

  12. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003;18:2024–31.

    Article  PubMed  CAS  Google Scholar 

  13. Kasiske BL, Keane WF. Renal diagnostic testing: past, present and future. Curr Opin Nephrol Hypertens 1996;5:519–20.

    Article  PubMed  CAS  Google Scholar 

  14. Kotas M, Schmitt P, Jakob PM, et al. Monitoring of tumor oxygenation changes in head-and-neck carcinoma patients breathing a hyperoxic hypercapnic gas mixture with a noninvasive MRI technique. Strahlenther Onkol 2009;185:19–26.

    Article  PubMed  Google Scholar 

  15. Lah TT, Kokalj-Kunovar M, Drobnic-Kosorok M, et al. Cystatins and cathepsins in breast carcinoma. Biol Chem Hoppe Seyler 1992;373:595–604.

    Article  PubMed  CAS  Google Scholar 

  16. Lah TT, Kos J, Blejec A, et al. The Expression of Lysosomal Proteinases and Their Inhibitors in Breast Cancer: Possible Relationship to Prognosis of the Disease. Pathol Oncol Res 1997;3:89–99.

    Article  PubMed  Google Scholar 

  17. Larsson A, Malm J, Grubb A, et al. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 2004;64:25–30.

    Article  PubMed  CAS  Google Scholar 

  18. Le Bricon T, Thervet E, Froissart M, et al. Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation. Clin Chem 2000;46:1206–7.

    PubMed  Google Scholar 

  19. Leite EA, Giuberti Cdos S, Wainstein AJ, et al. Acute toxicity of long-circulating and pH-sensitive liposomes containing cisplatin in mice after intraperitoneal administration. Life Sci 2009;84:641–9.

    Article  PubMed  CAS  Google Scholar 

  20. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–70.

    PubMed  CAS  Google Scholar 

  21. Nagy V, Coza O, Ordeanu C, et al. Radiotherapy versus concurrent 5-day cisplatin and radiotherapy in locally advanced cervical carcinoma. Long-term results of a phase III randomized trial. Strahlenther Onkol 2009;185:177–83.

    Article  PubMed  Google Scholar 

  22. Park HR, Ju EJ, Jo SK, et al. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice. BMC Cancer 2009;9:85.

    Article  PubMed  Google Scholar 

  23. Patterson WP, Reams GP. Renal toxicities of chemotherapy. Semin Oncol 1992;19:521–8.

    PubMed  CAS  Google Scholar 

  24. Peponi E, Glanzmann C, Kunz G, et al. Simultaneous Integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer. Strahlenther Onkol 2010;186:135–42.

    Article  PubMed  Google Scholar 

  25. Platteaux N, Dirix P, Hermans R, et al. Brachial plexopathy after chemoradiotherapy for head and neck squamous cell carcinoma. Strahlenther Onkol 2010;186:517–20.

    Article  PubMed  Google Scholar 

  26. Rutkowski T, Wygoda A, Hutnik M, et al. Intraoperative radiotherapy (IORT) with low-energy photons as a boost in patients with early-stage oral cancer with the indications for postoperative radiotherapy : treatment feasibility and preliminary results. Strahlenther Onkol 2010;186:496–501.

    Article  PubMed  Google Scholar 

  27. Sakata K, Someya M, Hori M, et al. Hyperfractionated accelerated radio-therapy for T1,2 glottic carcinoma. Consideration of time-dose factors. Strahlenther Onkol 2008;184:364–9.

    Article  PubMed  Google Scholar 

  28. Stabuc B, Vrhovec L, Stabuc-Silih M, et al. Improved prediction of decreased creatinine clearance by serum cystatin C: use in cancer patients before and during chemotherapy. Clin Chem 2000;46:193–7.

    PubMed  CAS  Google Scholar 

  29. Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008;51:395–406.

    Article  PubMed  CAS  Google Scholar 

  30. Studer G, Seifert B, Glanzmann C. Prediction of distant metastasis in head neck cancer patients: implications for induction chemotherapy and pretreatment staging? Strahlenther Onkol 2008;184:580–5.

    Article  PubMed  Google Scholar 

  31. Weiss RB. Medical oncology–a new subspecialty. W V Med J 1972;68:293–4.

    CAS  Google Scholar 

  32. Werle B, Schanzenbacher U, Lah TT, et al. Cystatins in non-small cell lung cancer: tissue levels, localization and relation to prognosis. Oncol Rep 2006;16:647–55.

    PubMed  CAS  Google Scholar 

  33. Wolff HA, Bosch J, Jung K, et al. High-grade acute organ toxicity as positive prognostic factor in primary radio(chemo)therapy for locally advanced, inoperable head and neck cancer. Strahlenther Onkol 2010;186:262–8.

    Article  PubMed  Google Scholar 

  34. Wright JG, Boddy AV, Highley M, et al. Estimation of glomerular filtration rate in cancer patients. Br J Cancer 2001;84:452–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zinkin NT, Grall F, Bhaskar K, et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin Cancer Res 2008;14:470–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Bölke*.

Additional information

*Authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bölke*, E., Schieren*, G., Gripp, S. et al. Cystatin C – A Fast and Reliable Biomarker for Glomerular Filtration Rate in Head and Neck Cancer Patients. Strahlenther Onkol 187, 191–201 (2011). https://doi.org/10.1007/s00066-010-2203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2203-5

Key Words

Schlüsselwörter

Navigation