Skip to main content

Advertisement

Log in

18F-FET-PET-Based Dose Painting by Numbers with Protons

18F-FET-PET-basiertes „dose painting by numbers“ mit Protonen

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To investigate the potential of 18F-fluoroethyltyrosine-positron emission tomography-(18F-FET-PET-)based dose painting by numbers with protons.

Material and Methods:

Due to its high specificity to brain tumor cells, FET has a high potential to serve as a target for dose painting by numbers. Biological image-based dose painting might lead to an inhomogeneous dose prescription. For precise treatment planning of such a prescribed dose, an intensity-modulated radiotherapy (IMRT) algorithm including a Monte Carlo dose-calculation algorithm for spot-scanning protons was used. A linear tracer uptake to dose model was used to derive a dose prescription from the 18F-FET-PET. As a first investigation, a modified modulation transfer function (MTF) of protons was evaluated and compared to the MTF of photons. In a clinically adapted planning study, the feasibility of 18F-FET-PET-based dose painting with protons was demonstrated using three patients with glioblastome multiforme. The resulting dose distributions were evaluated by means of dose-difference and dose-volume histograms and compared to IMRT data.

Results:

The MTF for protons was constantly above that for photons. The standard deviations of the dose differences between the prescribed and the optimized dose were smaller in case of protons compared to photons. Furthermore, the escalation study showed that the doses within the subvolumes identified by biological imaging techniques could be escalated remarkably while the dose within the organs at risk was kept at a constant level.

Conclusion:

The presented investigation fortifies the feasibility of 18F-FET-PET-based dose painting with protons.

Ziel:

Untersuchung der Möglichkeiten von 18F-Fluoroethyltyrosin-Positronenemissionstomographie-(18F-FET-PET-)basiertem „dose painting by numbers“ mit Protonen.

Material und Methodik:

Aufgrund seiner hohen Spezifität bei Hirntumoren ist FET potentiell gut als Marker für „dose painting by numbers“ geeignet. „Dose painting by numbers“ auf der Grundlage biologischer Bildgebung könnte zu einer heterogenen Dosisverschreibung führen. Für die Planung einer derartigen Dosisverschreibung wurde ein IMRT-Algorithmus (intensitätsmodulierte Radiotherapie) mit einem Monte-Carlo-Dosisalgorithmus verwendet. Ein lineares Traceranreicherung-zu-Dosis-Modell wurde verwendet, um die Dosisverschreibung von der 18F-FET-PET abzuleiten. Zur Untersuchung der Modulationsfähigkeit des Systems wurde eine modifizierte Modulationsübertragungsfunktion (MTF [„modulation transfer function“]) für Protonen ausgewertet und mit der MTF für Photonen verglichen. In einer klinisch adaptierten Planungsstudie wurden die Möglichkeiten von 18F-FET-basiertem „dose painting“ anhand dreier Patienten mit Glioblastoma multiforme demonstriert. Die geplanten Dosisverteilungen wurden mittels Differenzdosis- und Dosis-Volumen-Histogrammen ausgewertet und mit IMRT-Daten verglichen.

Ergebnisse:

Die MTF für Protonen war stets oberhalb der von Photonen. Die Standardabweichungen der Dosisdifferenzen zwischen vorgegebener und optimierter Dosisverteilung waren im Fall von Protonen kleiner als bei Photonen. Zusätzlich zeigte die Eskalationsstudie, dass die Dosis innerhalb durch biologische Bildgebung definierter Subvolumina deutlich eskaliert werden konnte, während gleichzeitig die Dosis innerhalb der Risikoorgane konstant gehalten werden konnte.

Schlussfolgerung:

Die vorgestellten Untersuchungen bestätigen die Durchführbarkeit von 18F-FET-PET-basiertem „dose painting“ mit Protonen und weisen auf deren Potential zur Dosiseskalation hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber M, Paulsen F, Eschmann SM, et al. On biologically conformal boost dose optimization. Phys Med Biol 2003;48:N31–5.

    Article  CAS  PubMed  Google Scholar 

  2. Baumert BG, Norton IA, Lomax AJ, et al. Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions. Int J Radiat Oncol Biol Phys 2004;60:1314–24.

    PubMed  Google Scholar 

  3. Bogner L, Hartmann M, Rickhey M, et al. Application of an inverse kernel concept to Monte Carlo based IMRT. Med Phys 2006;33:4749–57.

    Article  PubMed  Google Scholar 

  4. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 1997;24:2024–33.

    Article  CAS  PubMed  Google Scholar 

  5. Burnet NG, Jena R, Jefferies SJ, et al. Mathematical modelling of survival of glioblastoma patients suggests a role for radiotherapy dose escalation and predicts poorer outcome after delay to start treatment. Clin Oncol (R Coll Radiol) 2006;18:93–103.

    CAS  Google Scholar 

  6. Chao KS, Bosch WR, Mutic S, et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001;49:1171–82.

    Article  CAS  PubMed  Google Scholar 

  7. Del Sole A, Falini A, Ravasi L, et al. Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 2001;28:1851–72.

    Article  PubMed  Google Scholar 

  8. Fiorino C, Dell’Oca I, Pierelli A, et al. Simultaneous integrated boost (SIB) for nasopharynx cancer with helical tomotherapy. A planning study. Strahlenther Onkol 2007;183:497–505.

    Article  PubMed  Google Scholar 

  9. Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1998;26:1446–75.

    Google Scholar 

  10. Fippel M, Haryanto F, Dohm O, et al. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003;30:301–11.

    Article  PubMed  Google Scholar 

  11. Fippel M, Soukup M. A Monte Carlo dose calculation algorithm for proton therapy. Med Phys 2004;31:2263–73.

    Article  PubMed  Google Scholar 

  12. Flynn RT, Barbee DL, Mackie TR, et al. Comparison of intensity modulated x-ray therapy and intensity modulated proton therapy for selective subvolume boosting: a phantom study. Phys Med Biol 2007;52:6073–91.

    Article  CAS  PubMed  Google Scholar 

  13. Flynn RT, Bowen SR, Bentzen SM, et al. Intensity-modulated x-ray (IMXT) versus proton (IMPT) therapy for theragnostic hypoxia-based dose painting. Phys Med Biol 2008;53:4153–67.

    Article  PubMed  Google Scholar 

  14. Georg D, Georg P, Hillbrand M, et al. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenther Onkol 2008;184:586–91.

    Article  PubMed  Google Scholar 

  15. Hall EJ. Dose-painting by numbers: a feasible approach? Lancet Oncol 2005;6:66.

    Article  PubMed  Google Scholar 

  16. Heistercamp C, Haatanen T, Schild SE, et al. Dose escalation in patients receiving whole-brain therapy for brain metastases from colorectal cancer. Strahlenther Onkol 2010;186:70–5.

    Article  Google Scholar 

  17. Illiadis G, Selviaridis P, Kalogera-Fountzila A, et al. The importance of tumor volume in the prognosis of patients with glioblastoma. Comparison of computerized volumetry and geometric models. Strahlenther Onkol 2009;185:734–50.

    Article  Google Scholar 

  18. Karger CP, Jäkel O. Current status and new developments in ion therapy. Strahlenther Onkol 2007;183:295–300.

    Article  PubMed  Google Scholar 

  19. Kocher M, Frommolt P, Borberg S, et al. Randomized study of postoperative radiotherapy and simultaneous temozolomide without adjuvant chemotherapy for glioblastoma. Strahlenther Onkol 2008;184:572–9.

    Article  PubMed  Google Scholar 

  20. Langen KJ, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006;33:287–94.

    Article  CAS  PubMed  Google Scholar 

  21. Morávek Z, Bogner L. 354 inverse kernel optimisation for the spot-scanning proton radiotherapy. Radiother Oncol 2005;76:Suppl 2:S159–60.

    Article  Google Scholar 

  22. Pauleit D, Stoffels G, Bachofner A, et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 2009;36:779–87.

    Article  CAS  PubMed  Google Scholar 

  23. Pedroni E, Scheib S, Böhringer T, et al. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys Med Biol 2005;50:541–61.

    Article  CAS  PubMed  Google Scholar 

  24. Piroth M, Gagel B, Pinkawa M, et al. Postoperative radiotherapy of glioblastoma multiforme. Analysis and critical assessment of different treatment strategies and predictive factors. Strahlenther Onkol 2007;183:695–702.

    Article  PubMed  Google Scholar 

  25. Pöpperl G, Kreth F, Mehrkens J, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007;34:1933–42.

    Article  PubMed  Google Scholar 

  26. Rickhey M, Bogner L. Application of the inverse Monte Carlo treatment planning system IKO for an inhomogeneous dose prescription in the sense of dose painting. Z Med Phys 2006;16:307–12.

    PubMed  Google Scholar 

  27. Rickhey M, Koelbl O, Eilles C, et al. A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlenther Onkol 2008;184:536–42.

    Article  PubMed  Google Scholar 

  28. Steneker M, Lomax A, Schneider U. Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiother Oncol 2006;80:263–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sterzing F, Welzel T, Sroka-Perez G, et al. Reirradiation of multiple brain metastases with helical tomotherapy. A multifocal simultaneous integrated boost for eight or more lesions. Strahlenther Onkol 2009;185:89–93.

    Article  PubMed  Google Scholar 

  30. Taheri-Kadkhoda Z, Bjork-Eriksson T, Nill S, et al. Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons. Radiat Oncol 2008;3:4.

    Article  PubMed  Google Scholar 

  31. Thorwarth D, Soukup M, Alber M. Dose painting with IMPT, helical tomotherapy and IMXT: a dosimetric comparison. Radiother Oncol 2008;86:30–4.

    Article  PubMed  Google Scholar 

  32. Vandecasteele K, De Neve W, De Gersem W, et al. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation. Strahlenther Onkol 2008;185:799–807.

    Article  Google Scholar 

  33. Vanderstraeten B, Duthoy W, De Gersem W, et al. [(18)F]fluoro-deoxy-glucose positron emission tomography ([(18)F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 2006;79:249–58.

    Article  CAS  PubMed  Google Scholar 

  34. Wang C, Nakayama H, Sugahara T, et al. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer. Strahlenther Onkol 2008;185:231–4.

    Article  Google Scholar 

  35. Weber DC, Trofimov AV, Delaney TF, et al. A treatment planning comparison of intensity modulated photon and proton therapy for paraspinal sarcomas. Int J Radiat Oncol Biol Phys 2004;58:1596–606.

    Article  PubMed  Google Scholar 

  36. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Rickhey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickhey, M., Morávek, Z., Eilles, C. et al. 18F-FET-PET-Based Dose Painting by Numbers with Protons. Strahlenther Onkol 186, 320–326 (2010). https://doi.org/10.1007/s00066-010-2014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2014-8

Key Words:

Schlüsselwörter:

Navigation