Skip to main content
Log in

Intensity-Modulated Arc Therapy with Simultaneous Integrated Boost in the Treatment of Primary Irresectable Cervical Cancer

Treatment Planning, Quality Control, and Clinical Implementation

Intensitätsmodulierte Radiotherapie mit simultanem integriertem Boost zur primären Behandlung des inoperablen Zervixkarzinoms. Planung, Qualitätssicherung und klinische Umsetzung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To report on the planning procedure, quality control, and clinical implementation of intensity-modulated arc therapy (IMAT) delivering a simultaneous integrated boost (SIB) in patients with primary irresectable cervix carcinoma.

Patients and Methods:

Six patients underwent PET-CT (positron emission tomography-computed tomography) and MRI (magnetic resonance imaging) before treatment planning. Prescription (25 fractions) was

(1) a median dose (D50) of 62, 58 and 56 Gy to the primary tumor (GTV_cervix), primary clinical target volume (CTV_cervix) and its planning target volume (PTV_cervix), respectively;

(2) a D50 of 60 Gy to the PET-positive lymph nodes (GTV_nodes);

(3) a minimal dose (D98) of 45 Gy to the planning target volume of the elective lymph nodes (PTV_nodes).

IMAT plans were generated using an anatomy-based exclusion tool with the aid of weight and leaf position optimization. The dosimetric delivery of IMAT was validated preclinically using radiochromic film dosimetry.

Results:

Five to nine arcs were needed to create valid IMAT plans. Dose constraints on D50 were not met in two patients (both GTV_cervix: 1 Gy and 3 Gy less). D98 for PTV_nodes was not met in three patients (1 Gy each). Film dosimetry showed excellent gamma evaluation. There were no treatment interruptions.

Conclusion:

IMAT allows delivering an SIB to the macroscopic tumor without compromising the dose to the elective lymph nodes or the organs at risk. The clinical implementation is feasible.

Ziel:

Evaluation einer intensitätsmodulierten Rotationsbestrahlung (IMAT) mit Applikation eines simultanen integrierten Boosts (SIB) zur primären Behandlung des fortgeschrittenen Zervixkarzinoms.

Patienten und Methodik:

Sechs Patientinnen mit einem fortgeschrittenen Zervixkarzinom wurden einer MRT- (Magnetresonanztomographie) und PET-CT-basierten (Positronenemissionstomographie-Computertomographie) Bestrahlungsplanung für eine IMAT unterzogen und bestrahlt. Das Dosis-Zeit-Muster wurde, bezogen auf die entsprechenden Zielvolumina für 25 Fraktionen, wie folgt festgelegt:

1. Eine mediane Dosis (D50) von 62 Gy, 58 Gy und 56 Gy wurde für das makroskopische Zervixkarzinom (GTV), das klinische Zielvolumen (CTV) und das Planungszielvolumen (PTV) verschrieben.

2. Eine mediane Dosis von 60 Gy wurde für die PET-positiven regionären Lymphknoten festgelegt.

3. Elektiv zu bestrahlende regionäre Lymphknoten sollten eine minimale Dosis (D98) von 45 Gy erhalten.

Die IMAT-Pläne wurden mit Hilfe eines anatomiebasierten Ausschlussalgorithmus durch Optimierung und Wichtung von Leafpositionen erzeugt. Die präklinische Dosimetrie erfolgte mittels Filmdosimetrie.

Ergebnisse:

Insgesamt fünf bis neun Rotationsfelder waren zur Erzeugung geeigneter IMAT-Pläne erforderlich. Bei zwei Patientinnen war die angestrebte Dosis für das makroskopische Zervixkarzinom (GTV) 1 Gy und 3 Gy zu niedrig. In drei Fällen wurde die minimale Dosis (D98) an den elektiv zu behandelnden Lymphknoten um je 1 Gy unterschritten. Die Daten der Filmdosimetrie zeigten eine ausgezeichnete Gammabewertung. Die Bestrahlung konnte in allen Fällen ohne Unterbrechung appliziert werden.

Schlussfolgerung:

Die klinische Umsetzung der IMAT mit SIB des Zervixkarzinoms ist ohne Dosiskompromisse an elektiven Lymphknotenstationen und Risikoorganen möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carcopino X, Houvenaeghel G, Buttarelli M, et al. Equivalent survival in patients with advanced stage IB–II and III–IVA cervical cancer treated by adjuvant surgery following chemoradiotherapy. Eur J Surg Oncol 2008;34:569–575.

    CAS  PubMed  Google Scholar 

  2. Chan P, Yeo I, Perkins G, et al. Dosimetric comparison of intensity-modulated, conformal, and four-field pelvic radiotherapy boost plans for gynecologic cancer: a retrospective planning study. Radiat Oncol 2006;1:13.

    Article  PubMed  Google Scholar 

  3. Chen MF, Tseng CJ, Tseng CC, et al. Clinical outcome in posthysterectomy cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy: comparison with conventional radiotherapy. Int J Radiat Oncol Biol Phys 2007;67:1438–1444.

    CAS  PubMed  Google Scholar 

  4. Choy D, Wong LC, Sham J, et al. Dose-tumor response of carcinoma of cervix: an analysis of 594 patients treated by radiotherapy. Gynecol Oncol 1993;49:311–317.

    Article  CAS  PubMed  Google Scholar 

  5. Classe JM, Rauch P, Rodier JF, et al. Surgery after concurrent chemoradiotherapy and brachytherapy for the treatment of advanced cervical cancer: morbidity and outcome: results of a multicenter study of the GCCLCC (Groupe des Chirurgiens de Centre de Lutte Contre le Cancer). Gynecol Oncol 2006;102:523–529.

    Article  CAS  PubMed  Google Scholar 

  6. De Gersem W, Claus F, De Wagter C, et al. Leaf position optimization for step-and-shoot IMRT. Int J Radiat Oncol Biol Phys 2001;51:1371–1388.

    PubMed  Google Scholar 

  7. de Neve W, Duthoy W, Claus F, et al. Dose conformation in IMRT for head and neck tumors: which solution to apply? Cancer Radiother 2002;6:Suppl 1:32s–36s.

    PubMed  Google Scholar 

  8. De Wagter C. QA-QC of IMRT: European perspective. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, et al., eds. Image-guided IMRT. Berlin: Springer, 2005:117–128.

    Google Scholar 

  9. Dimopoulos JC, Schirl G, Baldinger A, et al. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 2009;185:282–287.

    Article  PubMed  Google Scholar 

  10. D’souza WD, Ahamad AA, Iyer RB, et al. Feasibility of dose escalation using intensity-modulated radiotherapy in posthysterectomy cervical carcinoma. Int J Radiat Oncol Biol Phys 2005;61:1062–1070.

    PubMed  Google Scholar 

  11. Duthoy W, De Gersem W, Vergote K, et al. Whole abdominopelvic radiotherapy (WAPRT) using intensity-modulated arc therapy (IMAT): first clinical experience. Int J Radiat Oncol Biol Phys 2003;57:1019–1032.

    PubMed  Google Scholar 

  12. Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004;60:794–806.

    PubMed  Google Scholar 

  13. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–122.

    CAS  PubMed  Google Scholar 

  14. Fonteyne V, De Neve W, Villeirs G, et al. Late radiotherapy-induced lower intestinal toxicity (RILIT) of intensity-modulated radiotherapy for prostate cancer: the need for adapting toxicity scales and the appearance of the sigmoid colon as co-responsible organ for lower intestinal toxicity. Radiother Oncol 2007;84:156–163.

    Article  PubMed  Google Scholar 

  15. Georg D, Georg P, Hillbrand M, et al. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenther Onkol 2008;184:586–591.

    Article  PubMed  Google Scholar 

  16. Georg D, Kirisits C, Hillbrand M, et al. Preliminary results of a comparison between high-tech external beam and high-tech brachytherapy for cervix carcinoma. Strahlenther Onkol 2007;183:Special Issue 2:19–20.

    Article  PubMed  Google Scholar 

  17. Gerszten K, Colonello K, Heron DE, et al. Feasibility of concurrent cisplatin and extended field radiation therapy (EFRT) using intensity-modulated radiotherapy (IMRT) for carcinoma of the cervix. Gynecol Oncol 2006;102:182–188.

    Article  CAS  PubMed  Google Scholar 

  18. Gillis S, De Wagter C, Bohsung J, et al. An inter-centre quality assurance network for IMRT verification: results of the ESTRO QUASIMODO project. Radiother Oncol 2005;76:340–353.

    Article  PubMed  Google Scholar 

  19. Green J, Kirwan J, Tierney J, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev 2005;3:CD002225.

    PubMed  Google Scholar 

  20. Grosu AL, Piert M, Weber WA, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–499.

    Article  PubMed  Google Scholar 

  21. Guerrero M, Li XA, Ma L, et al. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: radiobiological and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;62:933–939.

    PubMed  Google Scholar 

  22. Houvenaeghel G, Lelievre L, Buttarelli M, et al. Contribution of surgery in patients with bulky residual disease after chemoradiation for advanced cervical carcinoma. Eur J Surg Oncol 2007;33:498–503.

    Article  CAS  PubMed  Google Scholar 

  23. Kavanagh BD, Schefter TE, Wu Q, et al. Clinical application of intensity-modulated radiotherapy for locally advanced cervical cancer. Semin Radiat Oncol 2002;12:260–271.

    Article  PubMed  Google Scholar 

  24. Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 1999;340:1154–1161.

    Article  CAS  PubMed  Google Scholar 

  25. Keys HM, Bundy BN, Stehman FB, et al. Radiation therapy with and without extrafascial hysterectomy for bulky stage IB cervical carcinoma: a randomized trial of the Gynecologic Oncology Group. Gynecol Oncol 2003;89:343–353.

    Article  PubMed  Google Scholar 

  26. King M, McConkey C, Latief TN, et al. Improved survival after concurrent weekly cisplatin and radiotherapy for cervical carcinoma with assessment of acute and late side-effects. Clin Oncol (R Coll Radiol) 2006;18:38–45.

    CAS  Google Scholar 

  27. Kirwan JM, Symonds P, Green JA, et al. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol 2003;68:217–226.

    Article  PubMed  Google Scholar 

  28. Lanciano RM, Martz K, Coia LR, et al. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int J Radiat Oncol Biol Phys 1991;20:95–100.

    CAS  PubMed  Google Scholar 

  29. Low DA, Harms WB, Mutic S, et al. A technique for the quantitative evaluation of dose distributions. Med Phys 1998;25:656–661.

    Article  CAS  PubMed  Google Scholar 

  30. Lukka H, Hirte H, Fyles A, et al. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer — a meta-analysis. Clin Oncol (R Coll Radiol) 2002;14:203–212.

    CAS  Google Scholar 

  31. Maduro JH, Pras E, Willemse PH, et al. Acute and long-term toxicity following radiotherapy alone or in combination with chemotherapy for locally advanced cervical cancer. Cancer Treat Rev 2003;29:471–488.

    Article  CAS  PubMed  Google Scholar 

  32. Mancuso S, Smaniotto D, Benedetti Panici P, et al. Phase I–II trial of preoperative chemoradiation in locally advanced cervical carcinoma. Gynecol Oncol 2000;78:324–328.

    Article  CAS  PubMed  Google Scholar 

  33. Marks LB, Carroll PR, Dugan TC, et al. The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 1995;31:1257–1280.

    CAS  PubMed  Google Scholar 

  34. Morris M, Eifel PJ, Lu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 1999;340:1137–1143.

    Article  CAS  PubMed  Google Scholar 

  35. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2002;52:1330–1337.

    Article  PubMed  Google Scholar 

  36. Nagy V, Coza O, Ordeanu C, et al. Radiotherapy versus concurrent 5-day cisplatin and radiotherapy in locally advanced cervical carcinoma. Long-term results of a phase III randomized trial. Strahlenther Onkol 2009;185:177–183.

    Article  PubMed  Google Scholar 

  37. Niibe Y, Hayakawa K, Kanai T, et al. Optimal dose for stage IIIB adenocarcinoma of the uterine cervix on the basis of biological effective dose. Eur J Gynaecol Oncol 2006;27:47–49.

    CAS  PubMed  Google Scholar 

  38. Paelinck L, De Neve W, De Wagter C. Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys Med Biol 2007;52:231–242.

    Article  CAS  PubMed  Google Scholar 

  39. Paley PJ, Goff BA, Minudri R, et al. The prognostic significance of radiation dose and residual tumor in the treatment of barrel-shaped endophytic cervical carcinoma. Gynecol Oncol 2000;76:373–379.

    Article  CAS  PubMed  Google Scholar 

  40. Pandit-Taskar N. Oncologic imaging in gynecologic malignancies. J Nucl Med 2005;46:1842–1850.

    PubMed  Google Scholar 

  41. Peters WA 3rd, Liu PY, Barrett RJ 2nd, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 2000;18:1606–1613.

    CAS  PubMed  Google Scholar 

  42. Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001;51:261–266.

    CAS  PubMed  Google Scholar 

  43. Potter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 2007;83:148–155.

    Article  PubMed  Google Scholar 

  44. Resbeut M, Cowen D, Viens P, et al. Concomitant chemoradiation prior to surgery in the treatment of advanced cervical carcinoma. Gynecol Oncol 1994;54:68–75.

    Article  CAS  PubMed  Google Scholar 

  45. Rose PG, Ali S, Watkins E, et al. Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: a Gynecologic Oncology Group Study. J Clin Oncol 2007;25:2804–2810.

    Article  CAS  PubMed  Google Scholar 

  46. Stehman FB, Ali S, Keys HM, et al. Radiation therapy with or without weekly cisplatin for bulky stage 1B cervical carcinoma: follow-up of a Gynecologic Oncology Group trial. Am J Obstet Gynecol 2007;197:503 e1–6.

    Article  PubMed  Google Scholar 

  47. Sterzing F, Grehn C, Dinkel J, et al. Severe reversible toxic encephalopathy induced by cisplatin in a patient with cervical carcinoma receiving combined radiochemotherapy. Strahlenther Onkol 2007;183:487–489.

    Article  PubMed  Google Scholar 

  48. Taylor A, Rockall AG, Reznek RH, et al. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:1604–1612.

    Article  PubMed  Google Scholar 

  49. Vergote K, De Deene Y, Duthoy W, et al. Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment. Phys Med Biol 2004;49:287–305.

    Article  CAS  PubMed  Google Scholar 

  50. Villeirs GM, Van Vaerenbergh K, Vakaet L, et al. Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 2005;181:424–430.

    Article  PubMed  Google Scholar 

  51. Vorwerk H, Wagner D, Christiansen H, et al. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes. Strahlenther Onkol 2008;184:473–477.

    Article  PubMed  Google Scholar 

  52. Whitney CW, Sause W, Bundy BN, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 1999;17:1339–1348.

    CAS  PubMed  Google Scholar 

  53. Wong E, D’souza DP, Chen JZ, et al. Intensity-modulated arc therapy for treatment of high-risk endometrial malignancies. Int J Radiat Oncol Biol Phys 2005;61:830–841.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrien Vandecasteele MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandecasteele, K., De Neve, W., De Gersem, W. et al. Intensity-Modulated Arc Therapy with Simultaneous Integrated Boost in the Treatment of Primary Irresectable Cervical Cancer. Strahlenther Onkol 185, 799–807 (2009). https://doi.org/10.1007/s00066-009-1986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1986-8

Key Words:

Schlüsselwörter:

Navigation