Skip to main content

Advertisement

Log in

Impact of the Target Volume (Prostate Alone vs. Prostate with Seminal Vesicles) and Fraction Dose (1.8 Gy vs. 2.0 Gy) on Quality of Life Changes After External-Beam Radiotherapy for Prostate Cancer

Einfluss des Zielvolumens (Prostata allein vs. Prostata mit Samenblasen) und der Einzeldosis (1.8 Gy vs. 2.0 Gy) auf Veränderungen der Lebensqualität nach perkutaner Radiotherapie des Prostatakarzinoms

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To evaluate the impact of the clinical target volume (CTV) and fraction dose on quality of life (QoL) after external-beam radiotherapy (EBRT) for prostate cancer.

Patients and Methods:

A group of 283 patients has been surveyed prospectively before, at the last day, at a median time of 2 months and 15 months after EBRT (70.2–72 Gy) using a validated questionnaire (Expanded Prostate Cancer Index Composite). EBRT of prostate alone (P, n = 70) versus prostate with seminal vesicles (PS, n = 213) was compared. Differences of fraction doses (1.8 Gy, n = 80, vs. 2.0 Gy, n = 69) have been evaluated in the patient group receiving a total dose of 72 Gy.

Results:

Significantly higher bladder and rectum volumes were found at all dose levels for the patients with PS versus P within the CTV (p < 0.001). Similar volumes resulted in the groups with different fraction doses. Paradoxically, bowel function scores decreased significantly less 2 and 15 months after EBRT of PS versus P. 2 months after EBRT, patients with a fraction dose of 2.0 Gy versus 1.8 Gy reported pain with urination (≥ once a day in 12% vs. 3%; p = 0.04) and painful bowel movements (≥ rarely in 46% vs. 29%; p = 0.05) more frequently. No long-term differences were found.

Conclusion:

The risk of adverse QoL changes after EBRT for prostate cancer cannot be derived from the dose-volume histogram alone. Seminal vesicles can be included in the CTV up to a moderate total dose without adverse effects on QoL. Apart from a longer recovery period, higher fraction doses were not associated with higher toxicity.

Ziel:

Untersuchung des Einflusses von klinischem Zielvolumen (CTV) und Einzeldosis auf die Lebensqualitat (QoL) nach perkutaner Radiotherapie (EBRT) beim Prostatakarzinom.

Patienten und Methodik:

In einer Gruppe von 283 Patienten wurde die Lebensqualitat prospektiv vor, am letzten Tag, median 2 und 15 Monate nach EBRT (70,2–72 Gy) mittels eines validierten Fragebogens (Expanded Prostate Cancer Index Composite) erfasst. EBRT von Prostata allein (P, n = 70) versus Prostata mit Samenblasen (PS, n = 213) wurde verglichen. Unterschiedliche Einzeldosen (1,8 Gy, n = 80, vs. 2,0 Gy, n = 69) wurden bei den Patienten mit einer Gesamtdosis von 72 Gy evaluiert.

Ergebnisse:

Signifikant hohere Blasen- und Rektumvolumina wurden in allen Dosisbereichen bei Patienten mit PS versus P im CTV belastet (p < 0,001). Vergleichbare Volumina resultierten in den Gruppen mit unterschiedlichen Einzeldosen. Paradoxerweise war der Abfall der Funktionswerte fur den Darm 2 und 15 Monate nach EBRT der PS versus P signifikant geringer. 2 Monate nach EBRT berichteten Patienten mit einer Einzeldosis von 2,0 Gy versus 1,8 Gy haufiger uber Schmerzen beim Wasserlassen (≥ einmal taglich in 12% vs. 3%; p = 0,04) und Stuhlgang (≥ selten in 46% vs. 29%; p = 0,05). Langzeitunterschiede fanden sich nicht.

Schlussfolgerung:

Das Risiko nachteiliger QoL-Veranderungen nach EBRT des Prostatakarzinoms kann nicht allein vom Dosis-Volumen- Histogramm abgeleitet werden. Samenblasen konnen im CTV bis zu einer moderaten Dosis ohne negative Effekte auf die QoL eingeschlossen werden. Abgesehen von einer langeren Erholungszeit waren hohere Einzeldosen nicht mit hoherer Toxizitat assoziiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akimoto T, Muramatsu H, Takahashi M, et al. Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys 2004;60:1033–1039.

    Article  PubMed  Google Scholar 

  2. Al-Mamgani A, van Putten WL, Heemsbergen WD, et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;72:980–988.

    PubMed  Google Scholar 

  3. Baccala A, Reuther AM, Bianco FJ, et al. Complete resection of seminal vesicles at radical prostatectomy results in substantial long-term disease-free survival. Urology 2007;69:536–540.

    Article  PubMed  Google Scholar 

  4. Bohrer M, Schröder P, Welzel G, et al. Reduced rectal toxicity with ultrasound- based image guided radiotherapy using BAT™ (B-mode acquisition and targeting) for prostate cancer. Strahlenther Onkol 2008;184:674–678.

    Article  PubMed  Google Scholar 

  5. Bolla M, Gonzalez D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 1997;337:295–300.

    Article  CAS  PubMed  Google Scholar 

  6. Brenner DJ. Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys 2004;60:1013–1015.

    PubMed  Google Scholar 

  7. Elsayed H, Bolling T, Moustakis C, et al. Organ movements and dose exposures in teletherapy of prostate cancer using a rectal balloon. Strahlenther Onkol 2007;183:617–624.

    Article  PubMed  Google Scholar 

  8. Feigenberg SJ, Hanlon AL, Horwitz EM, et al. Long-term androgen deprivation increases grade 2 and higher late morbidity in prostate cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2005;62:397–405.

    CAS  PubMed  Google Scholar 

  9. Fiorino C, Sanguineti G, Cozzarini C, et al. Rectal dose-volume constraints in high-dose radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 2003;57:953–962.

    PubMed  Google Scholar 

  10. Gluck I, Vineberg KA, Ten Haken RK, et al. Evaluating the relationship between rectal normal tissue complication probability and the portion of seminal vesicles included in the clinical target volume in intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2009;73:334–340.

    PubMed  Google Scholar 

  11. Goldner G, Bombosch H, Geinitz H, et al. Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian-German multicenter phase II trial. Strahlenther Onkol 2009;185:94–100.

    Article  PubMed  Google Scholar 

  12. Goldner G, Tomicek B, Becker G, et al. Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: results of a prospective multicenter study of 166 patients. Int J Radiat Oncol Biol Phys 2007;67:78–83.

    PubMed  Google Scholar 

  13. Goldner G, Wachter-Gerstner N, Wachter S, et al. Acute side effects during 3-D-planned confromal radiotherapy of prostate cancer. Difference between patient’s self-reported questionnaire and the doctor’s report. Strahlenther Onkol 2003;179:320–327.

    Article  PubMed  Google Scholar 

  14. Hanks GE, Pajak TF, Porter A, et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group protocol 92-02. J Clin Oncol 2003;21:3972–3978.

    Article  CAS  PubMed  Google Scholar 

  15. Hille A, Herrmann MKA, Kertesz T, et al. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. Strahlenther Onkol 2008;184:686–692.

    Article  PubMed  Google Scholar 

  16. Hille A, Tows N, Schmidberger H, et al. A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio. Strahlenther Onkol 2005;181:789–795.

    Article  PubMed  Google Scholar 

  17. International Commission on Radiation Units and Measurements (ICRU). Prescribing, recording and reporting photon beam therapy. ICRU report 50. Bethesda: ICRU, 1993:1–8.

    Google Scholar 

  18. Kuban DA, Tucker SL, Dong L, et al. Long-term results of the M.D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2008;70:67–74.

    PubMed  Google Scholar 

  19. Lawton CA, DeSilvio M, Roach M III, et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 2007;69:646–655.

    PubMed  Google Scholar 

  20. Lieberfarb ME, Schultz D, Whittington R, et al. Using PSA, biopsy Gleason Score, clinical stage, and the percentage of positive biopsies to identify optimal candidates for prostate-only radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:898–903.

    PubMed  Google Scholar 

  21. Lilleby W, Dale E, Olsen DR, et al. Changes in treatment volume of hormonally treated and untreated cancerous prostate and its impact on rectal dose. Acta Oncol 2003;42:10–14.

    Article  PubMed  Google Scholar 

  22. Litwin MS, Luebeck DP, Henning JM, et al. Differences in urologist and patient assessments of health-related quality of life in men with prostate cancer: Results of the CaPSURE database. J Urol 1998;159:1988–1992.

    Article  CAS  PubMed  Google Scholar 

  23. Michalski JM, Winter K, Purdy JA, et al. Toxicity after three-dimensional radiotherapy for prostate cancer on RTOG 9406 dose level V. Int J Radiat Oncol Biol Phys 2005;62:706–713.

    PubMed  Google Scholar 

  24. Nairz O, Merz F, Deutschmann H, et al. A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients. Strahlenther Onkol 2008;184:663–667.

    Article  PubMed  Google Scholar 

  25. Pinkawa M, Asadpour B, Gagel B, et al. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int J Radiat Oncol Biol Phys 2006;64:856–861.

    PubMed  Google Scholar 

  26. Pinkawa M, Fischedick K, Asadpour B, et al. Low-grade toxicity after conformal radiation therapy for prostate cancer — impact of bladder volume. Int J Radiat Oncol Biol Phys 2006;64:835–841.

    PubMed  Google Scholar 

  27. Pinkawa M, Fischedick K, Asadpour B, et al. Toxicity profile with a large prostate volume after external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;70:83–89.

    PubMed  Google Scholar 

  28. Pinkawa M, Piroth MD, Asadpour B, et al. Neoadjuvant hormonal therapy and external-beam radiotherapy versus external-beam irradiation alone for prostate cancer. Strahlenther Onkol 2009;185:101–108.

    Article  PubMed  Google Scholar 

  29. Polat B, Guenther I, Wilbert J. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 2008;184:668–673.

    Article  PubMed  Google Scholar 

  30. Schultheiss TE, Lee WR, Hunt MA, et al. Late GI and GU complications in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1997;37:3–11.

    CAS  PubMed  Google Scholar 

  31. Valicenti RK, Winter K, Cox JD, et al. RTOG 94-06: is the addition of neoadjuvant hormonal therapy to dose-escalated 3D conformal radiation therapy for prostate cancer associated with treatment toxicity? Int J Radiat Oncol Biol Phys 2003;57:614–620.

    CAS  PubMed  Google Scholar 

  32. van der Kogel AJ. Radiation response and tolerance of normal tissues. In: Steel GG, ed. Basic clinical radiobiology. London: Arnold, 2002:30–41.

    Google Scholar 

  33. Volz-Sidiropoulou E, Pinkawa M, Fischedick K, et al. Factor analysis of the Expanded Prostate Cancer Index Composite (EPIC) in a patient group after primary (external beam radiotherapy and permanent iodine-125 brachytherapy) and postoperative radiotherapy for prostate cancer. Curr Urol 2008;2:122–129.

    Article  Google Scholar 

  34. Wei JT, Dunn RL, Litwin MS, et al. Development and validation of the Expanded Prostate Cancer Index Composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology 2000;56:899–905.

    Article  CAS  PubMed  Google Scholar 

  35. Yeoh EK, Holloway RH, Fraser RJ, et al. Anorectal function after three- versus two-dimensional radiation therapy for carcinoma of the prostata. Int J Radiat Oncol Biol Phys 2009;73:46–52.

    PubMed  Google Scholar 

  36. Zelefsky MJ, Chan H, Hunt M, et al. Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 2006;176:1415–1419.

    Article  PubMed  Google Scholar 

  37. Zietman AL, DeSilvio M, Slater JD, et al. Comparison of conventional-dose vs. high-dose radiation therapy in clinically localized adenocarcinoma of the prostate. JAMA 2005;294:1233–1239.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pinkawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkawa, M., Piroth, M.D., Fischedick, K. et al. Impact of the Target Volume (Prostate Alone vs. Prostate with Seminal Vesicles) and Fraction Dose (1.8 Gy vs. 2.0 Gy) on Quality of Life Changes After External-Beam Radiotherapy for Prostate Cancer. Strahlenther Onkol 185, 724–730 (2009). https://doi.org/10.1007/s00066-009-2008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-2008-6

Key Words:

Schlüsselwörter:

Navigation