Skip to main content
Log in

Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855–2870, 2015; Alibert et al. in Math Mech Solids 8(1):51–73, 2003; dell’Isola et al. in Int J Non-Linear Mech 80:200–208, 2016; Int J Solids Struct 81:1–12, 2016). The model that we employ here, developed by Steigmann and dell’Isola (Acta Mech Sin 31(3):373–382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi:10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J., Della Corte A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altenbach H., Eremeyev V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  5. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  6. AminPour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreaus, U., Baragatti, P., Placidi, L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non-Linear Mech. 80, 96–106 (2016). doi:10.1016/j.ijnonlinmec.2015.10.007

  8. Andreaus U., Casini P.: Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dyn. 22(2), 145–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreaus U., Casini P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Non-Linear Mech. 37(1), 117–133 (2002)

    Article  MATH  Google Scholar 

  10. Andreaus U., Chiaia B., Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375–398 (2013)

    Article  MathSciNet  Google Scholar 

  11. Andreaus U., Giorgio I., Lekszycki T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Camar-Eddine M., Seppecher P.: Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170(3), 211–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carassale L., Freda A., Marrè-Brunenghi M.: Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders. J. Wind Eng. Ind. Aerodyn. 123, 274–280 (2013)

    Article  Google Scholar 

  14. Carassale L., Piccardo G.: Non-linear discrete models for the stochastic analysis of cables in turbulent wind. Int. J. Non-Linear Mech. 45(3), 219–231 (2010)

    Article  Google Scholar 

  15. Carcaterra A., Akay A., Bernardini C.: Trapping of vibration energy into a set of resonators: theory and application to aerospace structures. Mech. Syst. Signal Process. 26, 1–14 (2012)

    Article  Google Scholar 

  16. Carcaterra A., D’Ambrogio W.: An iterative rational fraction polynomial technique for modal identification. Meccanica 30(1), 63–75 (1995)

    Article  MATH  Google Scholar 

  17. Carcaterra, A. dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015). doi:10.1007/s00205-015-0879-5

  18. Carcaterra A., Roveri N.: Tire grip identification based on strain information: theory and simulations. Mech. Syst. Signal Process. 41(1), 564–580 (2013)

    Article  Google Scholar 

  19. Cazzani A., Garusi E., Tralli A., Atluri S.N.: A four-node hybrid assumed-strain finite element for laminated composite plates. CMC Comput. Mater. Continua 2(1), 23–38 (2005)

    MATH  Google Scholar 

  20. Cazzani A., Lovadina C.: On some mixed finite element methods for plane membrane problems. Comput. Mech. 20(6), 560–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids. doi:10.1177/1081286514531265 (2014)

  22. Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids. 21(2), 182–209 (2016). doi:10.1177/1081286515577043

  23. Cazzani A., Ruge P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  24. Cecchi A., Rizzi N.L.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38(1), 29–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cesarano C., Cennamo G.M., Placidi L.: Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation. WSEAS Trans. Math. 13, 595–602 (2014)

    Google Scholar 

  26. Challamel N., Lerbet J., Wang C.M., Zhang Z.: Analytical length scale calibration of nonlocal continuum from a microstructured buckling model. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 94(5), 402–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Challamel, N., Zhang, Z., Wang, C.M.: Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams. J. Nanomech. Micromech. 5, A4014004-1–A4014004-16 (2014). doi:10.1061/(ASCE)NM.2153-5477.0000062

  28. Chiaia B., Kumpyak O., Placidi L., Maksimov V.: Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. 96, 88–99 (2015)

    Article  Google Scholar 

  29. D’Annibale F., Rosi G., Luongo A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Del Vescovo D., Fregolent A.: Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis. Mech. Syst. Signal Process. 23(7), 2312–2319 (2009)

    Article  Google Scholar 

  31. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  32. Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016). doi:10.1016/j.ijnonlinmec.2015.06.016

  33. dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int. J. Non-Linear Mech. 80, 200–208 (2016). doi:10.1016/j.ijnonlinmec.2015.10.010

  35. dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange Multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016). doi:10.1016/j.ijsolstr.2015.08.029

  36. dell’Isola F., Giorgio I., Andreaus U.: Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc. Estonian Acad. Sci. 64(3), 219–225 (2015)

    Article  Google Scholar 

  37. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472, 20150790 (2016). doi:10.1098/rspa.2015.0790

  38. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik. 66(6), 3473–3498 (2015). doi:10.1007/s00033-015-0556-4

  39. dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The complete works of Gabrio Piola: volume I—commented english translation. Adv. Struct. Mater. doi:10.1007/978-3-319-00263-7 (2014)

  40. dell’Isola F., Seppecher P., Della Corte A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. Lond. A 471(2183), 20150415 (2015)

    Article  MathSciNet  Google Scholar 

  41. dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dietrich L., Lekszycki T., Turski K.: Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech. 126(1–4), 153–167 (1998)

    Article  MATH  Google Scholar 

  43. Dos Reis F., Ganghoffer J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)

    Article  Google Scholar 

  44. Dos Reis F., Ganghoffer J.F.: Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput. Mater. Sci. 84, 145–155 (2014)

    Article  Google Scholar 

  45. Eremeyev V.A., Altenbach H., Morozov N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)

    Article  MATH  Google Scholar 

  46. Eremeyev V.A., Pietraszkiewicz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Eremeyev V.A., Pietraszkiewicz W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  48. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids. 21(2), 210–221 (2016). doi:10.1177/1081286515582862

  49. Federico S., Grillo A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)

    Article  Google Scholar 

  50. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  51. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Frischmuth K., Kosiéski W., Lekszycki T.: Free vibrations of finite-memory material beams. Int. J. Eng. Sci. 31(3), 385–395 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Topping, B.H.V. (ed.) Proceedings of the Eleventh International Conference on Computational Structures Technology. Civil-Comp Press, Stirlingshire, paper 15 (2012). doi:10.4203/ccp.99.15

  54. Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids. doi:10.1177/1081286515616052 (2015)

  55. Giorgio, I., Della Corte, A., dell’Isola, F., Steigmann, D.J.: Buckling modes in pantographic lattices. Comptes rendus Mecanique (2016). doi:10.1016/j.crme.2016.02.009

  56. Giorgio I., Grygoruk R., dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  57. Goda I., Assidi M., Ganghoffer J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)

    Article  Google Scholar 

  58. Goda I., Assidi M., Ganghoffer J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  59. Greco L., Cuomo M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–1540 (2012)

    Article  Google Scholar 

  60. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Greco L., Cuomo M.: Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 27(4), 861–877 (2015)

    Article  MathSciNet  Google Scholar 

  62. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  63. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47(2), 388–401 (2012)

    Article  Google Scholar 

  64. Grillo A., Wittum G., Tomic A., Federico S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hans S., Boutin C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)

    Article  Google Scholar 

  66. Harrison P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)

    Article  Google Scholar 

  67. Javili A., dell’Isola F., Steinmann P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Koh S.J.A., Lee H.P., Lu C., Cheng Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects. Phys. Rev. B 72(8), 085414 (2005)

    Article  Google Scholar 

  69. Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Lekszycki T., Olhoff N., Pedersen J.J.: Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos. Struct. 22(1), 15–31 (1992)

    Article  Google Scholar 

  71. Luongo, A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. In: Vakakis, A.F. (ed.) Normal Modes and Localization in Nonlinear Systems, pp. 133–156. Springer, Berlin (2001)

  72. Luongo A., Zulli D., Piccardo G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15), 1003–1014 (2009)

    Article  Google Scholar 

  73. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  74. Misra A., Roberts L.A., Levorson S.M.: Reliability analysis of drilled shaft behavior using finite difference method and Monte Carlo simulation. Geotech. Geol. Eng. 25(1), 65–77 (2007)

    Article  Google Scholar 

  75. Nadler B., Steigmann D.J.: A model for frictional slip in woven fabrics. Comptes Rendus Mecanique 331(12), 797–804 (2003)

    Article  MATH  Google Scholar 

  76. Nguyen C.H., Freda A., Solari G., Tubino F.: Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts. Eng. Struct. 85, 264–276 (2015)

    Article  Google Scholar 

  77. Nikopour H., Selvadurai A.P.S.: Torsion of a layered composite strip. Compos. Struct. 95, 1–4 (2013)

    Article  Google Scholar 

  78. Nikopour H., Selvadurai A.P.S.: Concentrated loading of a fibre-reinforced composite plate: experimental and computational modeling of boundary fixity. Compos. Part B Eng. 60, 297–305 (2014)

    Article  Google Scholar 

  79. Pagnini L.: Reliability analysis of wind-excited structures. J. Wind Eng. Ind. Aerodyn. 98(1), 1–9 (2010)

    Article  MathSciNet  Google Scholar 

  80. Pagnini L.C.: Model reliability and propagation of frequency and damping uncertainties in the dynamic along-wind response of structures. J. Wind Eng. Ind. Aerodyn. 59(2), 211–231 (1996)

    Article  Google Scholar 

  81. Pagnini, L.C., Piccardo, G.: The three-hinged arch as an example of piezomechanic passive controlled structure. Contin. Mech. Thermodyn. doi:10.1007/s00161-015-0474-x (2015)

  82. Pagnini L.C., Solari G.: Serviceability criteria for wind-induced acceleration and damping uncertainties. J. Wind Eng. Ind. Aerodyn. 74, 1067–1078 (1998)

    Article  Google Scholar 

  83. Piccardo G., D’Annibale F., Zulli D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27(4), 507–529 (2015)

    Article  MathSciNet  Google Scholar 

  84. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Pignataro M., Rizzi N., Ruta G., Varano V.: The effects of warping constraints on the buckling of thin-walled structures. J. Mech. Mater. Struct. 4(10), 1711–1727 (2009)

    Article  Google Scholar 

  86. Pignataro M., Ruta G., Rizzi N., Varano V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. ASME Int. Mech. Eng. Congress Exposit. Proc. 10(PART B), 803–810 (2010)

    Google Scholar 

  87. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1), 119–137 (2016). doi:10.1007/s00161-014-0405-2

  88. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

    Article  MathSciNet  Google Scholar 

  89. Placidi L., Andreaus U., Della Corte A., Lekszycki T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. Placidi L., Faria S.H., Hutter K.: On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets. Ann. Glaciol. 39(1), 49–52 (2004)

    Article  Google Scholar 

  91. Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 Cisterna di Latina 17–21, (March 2014) Generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids. doi:10.1177/1081286515576948 (2015)

  92. Porfiri M., Frattale Mascioli F.M., dell’Isola F.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circ. Theory Appl. 32(4), 167–198 (2004)

    Article  MATH  Google Scholar 

  93. Rahali Y., Giorgio I., Ganghoffer J.F., dell’Isola F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  94. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. Rizzi N.L., Varano V.: The effects of warping on the postbuckling behaviour of thin-walled structures. Thin Walled Struct. 49(9), 1091–1097 (2011)

    Article  Google Scholar 

  96. Rizzi N.L., Varano V.: On the Postbuckling Analysis of Thin-Walled Frames. Civil-Comp Press, Stirling (2011)

    Google Scholar 

  97. Rizzi N.L., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  98. Rosi G., Pouget J., dell’Isola F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A/Solids 29(5), 859–870 (2010)

    Article  MathSciNet  Google Scholar 

  99. Roveri N., Carcaterra A.: Damage detection in structures under traveling loads by Hilbert-Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  Google Scholar 

  100. Roveri N., Carcaterra A., Akay A.: Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J. Acoust. Soc. Am. 126(5), 2306–2314 (2009)

    Article  Google Scholar 

  101. Ruta G.C., Varano V., Pignataro M., Rizzi N.L.: A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin Wall. Struct. 46(7–9), 816–822 (2008)

    Article  Google Scholar 

  102. Seddik H., Greve R., Zwinger T., Placidi L.: A full Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution. The Cryosphere 5(2), 495–508 (2011)

    Article  Google Scholar 

  103. Selvadurai A.P.S., Nikopour H.: Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: experiments, theory and computations. Compos. Struct. 94(6), 1973–1981 (2012)

    Article  Google Scholar 

  104. Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Article  Google Scholar 

  105. Solari G., Pagnini L.C., Piccardo G.: A numerical algorithm for the aerodynamic identification of structures. J. Wind Eng. Ind. Aerodyn. 69, 719–730 (1997)

    Article  Google Scholar 

  106. Soubestre J., Boutin C.: Non-local dynamic behavior of linear fiber reinforced materials. Mech. Mater. 55, 16–32 (2012)

    Article  Google Scholar 

  107. Steigmann D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 47(7), 734–742 (2012)

    Article  Google Scholar 

  108. Steigmann D.J., dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  Google Scholar 

  109. Steigmann D.J., Pipkin A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419–454 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  110. Tomic A., Grillo A., Federico S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  111. Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  112. Turco E.: Is the statistical approach suitable for identifying actions on structures?. Comput. Struct. 83(25), 2112–2120 (2005)

    Article  Google Scholar 

  113. Turco E., Aristodemo M.: A three-dimensional B-spline boundary element. Comput. Methods Appl. Mech. Eng. 155(1), 119–128 (1998)

    Article  MATH  Google Scholar 

  114. Turco E., Caracciolo P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190(5), 691–706 (2000)

    Article  MATH  Google Scholar 

  115. Wang, C.M., Zhang, H., Gao, R.P., Duan, W.H., Challamel, N.: Hencky bar-chain model for buckling and vibration of beams with elastic end restraints. Int. J. Struct. Stabil. Dyn. 15, 1540007-1–1540007-16 (2015). doi:10.1142/S0219455415400076

  116. Yang Y., Ching W.Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromechan. 1(2), 60–71 (2011)

    Article  Google Scholar 

  117. Yang Y., Misra A.: Higher-order stress–strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci. (CMES) 64(1), 1–36 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scerrato, D., Giorgio, I. & Rizzi, N.L. Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67, 53 (2016). https://doi.org/10.1007/s00033-016-0650-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0650-2

Mathematics Subject Classification

Keywords

Navigation