Skip to main content
Log in

Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in \({\mathbb{R}^3}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are interested in the existence and asymptotic behavior of sign-changing solutions to the following nonlinear Schrödinger–Poisson system

$$\left\{\begin{array}{ll}-\Delta u+V(x)u+\lambda \phi(x)u =f(u), \ &\quad x \in \mathbb{R}^3,\\ -\Delta \phi=u^2, \ &\quad x \in \mathbb{R}^3,\end{array}\right.$$

where V(x) is a smooth function and λ is a positive parameter. Because the so-called nonlocal term \({\lambda \phi_u(x)u}\) is involving in the equation, the variational functional of the equation has totally different properties from the case of \({\lambda=0}\). Under suitable conditions, combining constraint variational method and quantitative deformation lemma, we prove that the problem possesses one sign-changing solution \({u_\lambda}\). Moreover, we show that any sign-changing solution of the problem has an energy exceeding twice the least energy, and for any sequence \({\{\lambda_n\} \rightarrow 0^+(n \rightarrow \infty)}\), there is a subsequence \(\{\lambda_{n_k}\}\), such that \({u_{\lambda_{n_k}}}\) converges in \({H^1(\mathbb{R}^3)}\) to \({u_0}\) as \({k\rightarrow \infty}\), where \({u_0}\) is a sign-changing solution of the following equation

$$-\Delta u+V(x)u=f(u),\quad \ x \in \mathbb{R}^3$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves C.O., Souto M.A.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azzollini A., d’Avenia P., Pomponio A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 779–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Liu Z.L., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 259–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch T., Weth T., Willem M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartsch T., Willem M.: Infinitely many radial solutions of a semilinear elliptic problem on \({\mathbb{R}^N}\). Arch. Ration. Mech. Anal. 124, 261–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro A., Cossio J., Neuberger J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27, 1041–1053 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conti M., Terracini S., Verzini G.: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 871–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Aprile T., Wei J.C.: Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem. Calc. Var. Partial Differ. Equ. 25, 105–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ianni I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365–385 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Ianni I., Vaira G.: On concentration of positive bound states for the Schröinger-Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Kim S., Seok J.: On nodal solutions of the nonlinear Schrödinger-Poisson equations. Commun. Contemp. Math. 14, 1–16 (2012)

    Article  MathSciNet  Google Scholar 

  15. Li G.B., Peng S.J., Yan S.S.: Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruiz D.: The Schrödinger-Poissom equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ruiz D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sánchez O., Soler J.: Long-time dynamics of the Schrödinger-Poisson-Slater system. J. Stat. Phys. 114, 179–204 (2004)

    Article  MATH  Google Scholar 

  19. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MATH  Google Scholar 

  20. Wang J., Tian L.X., Xu J.X., Zhang F.B.: Existence and concentration of positive solutions for semilinear Schröinger-Poisson systems in \({\mathbb{R}^3}\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang Z.P., Zhou H.S.: Positive solution for a nonlinear stationary Schrödinger Poisson system in \({\mathbb{R}^3}\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Z.P., Zhou, H.S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \({\mathbb{R}^3}\) Calc. Var. Partial Differ. Equ. 52, 927–943 (2015)

  23. Weth T.: Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differ. Equ. 27, 421–437 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Willem M.: Minimax Theorems. Birkhäuser, Barel (1996)

    Book  MATH  Google Scholar 

  25. Zou W.M.: Sign-Changing Critical Point Theory. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, W., Wang, Q. Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in \({\mathbb{R}^3}\) . Z. Angew. Math. Phys. 66, 3267–3282 (2015). https://doi.org/10.1007/s00033-015-0571-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0571-5

Mathematics Subject Classification

Keywords

Navigation