Skip to main content
Log in

Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the following system of Maxwell-Schrödinger equations

$$ \Delta u - u - \delta u \psi+ f(u)=0, \quad \Delta \psi + u^2 = 0 \mbox{in} {\mathbb R}^N , u, \;\psi > 0, \quad u, \;\psi \to 0 \ \mbox{as} \ |x| \to + \infty, $$

where δ > 0, u, ψ : \(\psi: {\mathbb R}^N \to {\mathbb R}\), f : \({\mathbb R} \to {\mathbb R}\), N ≥ 3. We prove that the set of solutions has a rich structure: more precisely for any integer K there exists δ K > 0 such that, for 0 < δ < δ K , the system has a solution (u δ, ψδ) with the property that u δ has K spikes centered at the points \(Q_{1}^\delta,\ldots, Q_K^\delta\). Furthermore, setting \(l_\delta=\min_{i \not = j} |Q_i^\delta -Q_j^\delta|\), then, as δ → 0, \((\frac{1}{l_\delta} Q_1^\delta,\ldots, \frac{1}{l_\delta} Q_K^\delta)\) approaches an optimal configuration for the following maximization problem:

$$ \max\bigg\{\sum_{{i\neq j}}\frac{1}{|Q_i-Q_j|^{N-2}}\,\Big|\, (Q_i,\ldots, Q_K)\in {\mathbb R}^{NK},\, |Q_i-Q_j|\geq 1\hbox{ for }i\neq j\bigg\}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal. 159(3), 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal. 11(2), 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Chen, X., Del Pino, M., Kowalczyk, M.: The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Comm. Contemp. Math. 3, 419–439 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C.C., Lin, C.S.: Uniqueness of the ground state solution of Δ u + f(u) = 0 in ℝN, N≥ 3, Comm. PDE 16, 1549–1572 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Coclite, G.M., Georgiev, V.: Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations 2004, 94, 1–31 (2004)

    Google Scholar 

  7. Dancer, E.N.: A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61, 305–312 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dancer, E.N., Yan, S.: Multipeak solutions for a sing ular perturbed Neumann problem, Pacific J. Math. 189, 241–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. DAPOS;Aprile, T.: Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic field, NoDEA Nonlinear Differential Equations Appl., to appear.

  10. DAPOS;Aprile, T., Mugnai, D.: Existence of solitary waves for the nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134(5), 893–906

    Google Scholar 

  11. DAPOS;Aprile, T., Wei, J.: On Bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37(1), 321–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE 4(2), 121–137 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149(1), 245–265 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Del Pino, M., Felmer, P.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324(1), 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Del Pino, M., Felmer, P., Wei, J.: On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31(1), 63–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Del Pino, M., Kowalczyk, M., Wei, J.: Multi-bump ground states for the Gierer-Meinhardt system in ℝ2, Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 53–85 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations, American Mathematical Society, Providence, Rhode Island (1998).

  19. Floer, A., Weinstein, A.: Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in ℝN, Adv. Math. Suppl Stud. 7A, 369–402 (1981)

    MathSciNet  Google Scholar 

  21. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Springer Verlag Berlin Heidelberg 2001.

    MATH  Google Scholar 

  22. Grossi, M.: Some results on a class of nonlinear Schrödinger equations, Math. Z. 235(4), 687–705 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grossi, M., Pistoia, A., Wei, J.: Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. PDE 11(2), 143–175 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gui, C.: Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84(3), 739–769 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differ. Equations 158(1), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52(3), 522–538 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 47–82 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Kang, X., Wei, J.: On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Diff. Eqns. 5, 899–928 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Kwong, M.K.: Uniqueness of positive solutions of Δ uu + u p = 0 in ℝN, Arch. Rational Mech. Anal. 105, 243–266 (1991)

    MathSciNet  Google Scholar 

  30. Li, Y.Y.: On a singularly perturbed elliptic equation, Adv. Differ. Equ. 6(2), 955–980 (1997)

    MATH  Google Scholar 

  31. Li, Y.Y.: On a singularly perturbed equation with Neumann boundary conditions, Commun. PDE 23(3–4), 487-545 (1998)

    MATH  Google Scholar 

  32. Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem, Comm. Pure App. Math. 41(7), 819–851 (1991)

    MathSciNet  Google Scholar 

  33. Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semi-linear Neumann problem, Duke Math. J. 70, 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ni, W.M., Wei, J.: On ground state concentrating on spheres for the Gierer-Meinhardt system, preprint (2003)

  35. Ni, W.M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinaer Dirichlet problems, Comm. Pure. Appl. Math. 48, 731–768 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Ni, W.M., Takagi, I., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94, 597–618 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oh, Y.J.: Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class (V)a, Comm. Partial Diff. Eq. 13, 1499–1519 (1998)

    Google Scholar 

  38. Oh, Y.J.: On positive multi-lump bound states of nonlinear Schrödinger equation under multiple well potential, Comm. Math. Phys. 131, 223–253 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Rabinowitz, P.: On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153(2), 229–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, J.: On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differ. Equations, 134, 104–133 (1997)

    Article  MATH  Google Scholar 

  42. Wei, J.: On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differ. Equations 129(2), 315–333 (1996)

    Article  MATH  Google Scholar 

  43. Wei, J., Winter, M.: Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa D'Aprile.

Additional information

Subject class: Primary 35B40, 35B45; Secondary 35J55, 92C15, 92C40

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Aprile, T., Wei, J. Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem. Calc. Var. 25, 105–137 (2006). https://doi.org/10.1007/s00526-005-0342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0342-9

Keywords

Navigation