Skip to main content
Log in

Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the existence of least energy nodal solution for a class of Schrödinger–Poisson system in a bounded domain \({\Omega \subset {\mathbb{R}}^3}\) with nonlinearity having a subcritical growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O.: Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in \({{\mathbb{R}}^{N} }\) . Top. Meth. Nonlinear Anal. 34, 231–250 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Alves C.O., Soares S.H.M.: On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296, 563–577 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alves C.O., Soares S.H.M.: Nodal solutions for singularly perturbed equations with critical exponential growth. J. Differ. Equ. 234, 464–484 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosetti A., Ruiz R.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartsch T., Weth T., Willem M.: Partial symmetry of least energy nodal solution to some variational problems. J. D’Analyse Mathématique 1, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 259–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartsch T., Liu Z., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differ. Equ. 29, 25–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Top. Meth. Nonlinear Anal. 11, 283–293 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Berestycki H., Lions P.L.: Nonlinear scalar field equations I—existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–346 (1983)

    MATH  MathSciNet  Google Scholar 

  11. Bokanowski, O., Mauser, N.J.: Local approximation of the Hartree–Fock exchange potential: a deformation approach. M3AS 9, 941–961 (1999)

    Google Scholar 

  12. Castro A., Cossio J., Neuberger J.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27(4), 1041–1053 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cerami G., Vaira G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coclite G.M.: A multiplicity result for the nonlinear Schrödinger–Maxwell equations. Commun. Appl. Anal. 7, 417–423 (2003)

    MATH  MathSciNet  Google Scholar 

  15. D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893–906 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    MATH  MathSciNet  Google Scholar 

  17. d’Avenia P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Ianni I., Vaira G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Ianni, I.: Sign-Changing Radial Solutions for the Schrödinger–Poisson–Slater Problem. arXiv:1108.2803v1

  20. Kikuchi H.: On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim S., Seok J.: On nodal solutions of the Nonlinear Schrödinger–Poisson equations. Comm. Cont. Math. 14, 12450041–12450057 (2012)

    Article  MathSciNet  Google Scholar 

  22. Miranda C.: Un’ osservazione su un teorema di Brouwer. Bol. Un. Mat. Ital. 3, 5–7 (1940)

    Google Scholar 

  23. Mauser N.J.: The Schrödinger–Poisson-\({X_\alpha}\) equation. Appl. Math. Lett. 14, 759–763 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pisani L., Siciliano G.: Note on a Schrödinger–Poisson system in a bounded domain. Appl. Math. Lett. 21, 521–528 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ruiz D., Siciliano G.: A note on the Schrödinger–Poisson–Slater equation on bounded domains. Adv. Nonlinear Stud. 8, 179–190 (2008)

    MathSciNet  Google Scholar 

  27. Siciliano G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365, 288–299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sánchez O., Soler J.: Long-time dynamics of the Schrödinger–Poisson–Slater system. J. Stat. Phys. 114, 179–204 (2004)

    Article  MATH  Google Scholar 

  29. Zhao F., Zhao L.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zou W.: Sign-Changing Critical Point Theory. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Partially supported by INCT-MAT, Casadinho/PROCAD 552464/2011-2.

C. O. Alves was partially supported by CNPq/Brazil 303080/2009-4.

M. A. S. Souto was supported by CNPq/Brazil 304652/2011-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, C.O., Souto, M.A.S. Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014). https://doi.org/10.1007/s00033-013-0376-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0376-3

Mathematics Subject Classification (2000)

Keywords

Navigation