Skip to main content
Log in

Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \({\mathbb{R}^{3}}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

An Erratum to this article was published on 06 November 2012

Abstract

In this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger–Poisson system

$$\left\{\begin{array}{ll}-\varepsilon^{2}\Delta u + a(x)u + \lambda\phi(x)u = b(x)f(u), & x \in \mathbb{R}^{3},\\-\varepsilon^{2}\Delta\phi = u^{2}, \ u \in H^{1}(\mathbb{R}^{3}), &x \in \mathbb{R}^{3},\end{array}\right.$$

where ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that a(x) has at least one minimum and b(x) has at least one maximum. We first prove the existence of least energy solution (u ε , φ ε ) for λ ≠ 0 and ε > 0 sufficiently small. Then we show that u ε converges to the least energy solution of the associated limit problem and concentrates to some set. At the same time, some properties for the least energy solution are also considered. Finally, we obtain some sufficient conditions for the nonexistence of positive ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., Souto M.A.: On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun. Pure Appl. Anal. 1, 417–431 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A.: On Schrödinger-Possion systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problem on \({\mathbb{R}^{N}}\). In: Progress in Mathematics, vol. 240. Birkhäuser, Boston (2005)

  4. Ambrosetti, A., Malchiodi, A.: Concentration phenomena for NLS: recent results and new perspectives. In: Perspectives in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 446, pp. 19–30. American Mathematical Society, Providence (2007)

  5. Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti A., Wang Z.Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integr. Equ. 18, 1321–1332 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (2001)

    Article  MathSciNet  Google Scholar 

  8. Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrosetti A., Malchiodi A., Ruiz D.: Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Anal. Math. 98, 317–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Azzollini A.: Concentration and compactness in nonlinear Schrödinger-Poisson systemwith a general nonlinearity. J. Differ. Equ. 249, 1746–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Azzollini A., d’Avenia P., Pomponio A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 779–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ba N., Deng Y.Y., Peng S.J.: Multi-peak bound states for Schrödinger equations with compactly supported or unbounded potentials. Ann.mI. H. Poincaré-AN 27, 1205–1226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezis H., Kato T.: Remarks on the Schrödinger operator with regular complex potentials. J. Math. pures et appl 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Cerami G., Vaira G.: Positive solutions for some non autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. A 134, 893–906 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    MathSciNet  MATH  Google Scholar 

  17. D’Aprile T., Wei J.: On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fei M.W., Yin H.C.: Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials. Pac. J. Math. 2, 261–296 (2010)

    MathSciNet  Google Scholar 

  19. Gilbarg, D., Trudingerm, N.S.: Elliptic partial differential equations of second order. In: Grundlehren der Mathematischen Wissenschaften, 2nd edn, vol. 224. Springer, Berlin (1983)

  20. He X.M.: Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations. Z Angew. Math. Phys. 5, 869–889 (2011)

    Article  Google Scholar 

  21. Ianni I., Vaira G.: On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Jeanjean L.: On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer type problem set on \({\mathbb{R}^{N}}\). Proc. R. Soc. Edinb. A 129, 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeanjean L., Tanaka K.: A positive solution for an asymptotically linear elliptic problem on \({\mathbb{R}^{N}}\) autonomous at infinity, ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. 21, 287–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kikuchi H.: Existence and stability of standing waves for Schrödinger-Poisson-Slater equation. Adv. Nonlinear Stud. 7, 403–437 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Mugnai D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099–1117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ruiz D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruiz D., Vaira G.: Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoamericana 1, 253–271 (2011)

    Article  MathSciNet  Google Scholar 

  29. Szulkin A., Weth T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.), Handbook of Nonconvex Analysis and Applications., pp. 597–632. International Press, Boston (2010)

    Google Scholar 

  30. Vaira G.: Ground states for Schrödinger-Poisson type systems. Ricerche mat 2, 263–297 (2011)

    Article  MathSciNet  Google Scholar 

  31. Wang Z., Zhou H.S.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \({\mathbb{R}^{3}}\). Discr. Contin. Dyn. Syst. 18, 809–816 (2007)

    Article  MATH  Google Scholar 

  32. Wang J., Tian L.X., Xu J.X., Zhang F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Basel (1996)

  34. Yin H.C., Zhang P.Z.: Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity. J. Differ. Equ. 247, 618–647 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao L., Zhao F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Tian, L., Xu, J. et al. Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \({\mathbb{R}^{3}}\) . Calc. Var. 48, 243–273 (2013). https://doi.org/10.1007/s00526-012-0548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0548-6

Mathematics Subject Classification

Navigation