Skip to main content
Log in

Singular sensitivity in a Keller–Segel-fluid system

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In bounded smooth domains \(\Omega \subset \mathbb {R}^N\), \(N\in \{2,3\}\), considering the chemotaxis–fluid system

$$\begin{aligned} n_t + u\cdot \nabla n&= \Delta n - \chi \nabla \cdot \left( \frac{n}{c}\nabla c\right) \\ c_t + u\cdot \nabla c&= \Delta c - c + n\\ u_t + \kappa (u\cdot \nabla ) u&= \Delta u + \nabla P + n\nabla \phi \end{aligned}$$

with singular sensitivity, we prove global existence of classical solutions for given \(\phi \in C^2(\overline{\Omega })\), for \(\kappa =0\) (Stokes-fluid) if \(N=3\) and \(\kappa \in \{0,1\}\) (Stokes- or Navier–Stokes-fluid) if \(N=2\) and under the condition that

$$\begin{aligned} 0<\chi <\sqrt{\frac{2}{N}}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler. Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci., 25(9):1663–1763, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Biler. Global solutions to some parabolic–elliptic systems of chemotaxis. Adv. Math. Sci. Appl., 9(1):347–359, 1999.

    MathSciNet  MATH  Google Scholar 

  3. T. Black. Sublinear signal production in a two-dimensional Keller–Segel–Stokes system. Nonlinear Anal. Real World Appl., 31:593–609, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Black. Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system. 2017. preprint; arXiv:1705.06131.

  5. M. Braukhoff. Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth. Ann. Inst. H. Poincaré, Anal. Non Linéaire 34 (4): 1013–1039, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Cao, S. Kurima, and M. Mizukami. Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics. 2017. preprint; arXiv:1703.01794.

  7. X. Cao and J. Lankeit. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differential Equations, 55(4):Paper No. 107, 39, 2016.

  8. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett., 93:098103, Aug 2004.

    Article  Google Scholar 

  9. K. Fujie. Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl., 424(1):675–684, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Fujie and T. Senba. Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity, 29(8):2417–2450, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Fujie and T. Senba. Sufficient condition on sensitivity functions for global existence in a fully parabolic Keller–Segel system. 2017. in preparation; presented at “The 2nd International Workshop on Mathematical Analysis of Chemotaxis”, Tokyo.

  12. D. Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1981.

  13. M. Hirata, S. Kurima, M. Mizukami, and T. Yokota. Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier–Stokes system with competitive kinetics. J. Differential Equations, 263(1):470–490, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Horstmann and M. Winkler. Boundedness vs. blow-up in a chemotaxis system. J. Differential Equations, 215(1):52–107, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Ishida. Global existence and boundedness for chemotaxis-Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst., 35(8):3463–3482, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Jiang, H. Wu, and S. Zheng. Global existence and asymptotic behavior of solutions to a chemotaxis–fluid system on general bounded domains. Asymptot. Anal., 92(3-4):249–258, 2015.

    MathSciNet  MATH  Google Scholar 

  17. Y. V. Kalinin, L. Jiang, Y. Tu, and M. Wu. Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J., 96(6):2439–2448, 2009.

    Article  Google Scholar 

  18. E. F. Keller and L. A. Segel. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol., 30(2):235–248, 1971.

    Article  MATH  Google Scholar 

  19. H. Kozono, M. Miura, and Y. Sugiyama. Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal., 270(5):1663–1683, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Lankeit. Long-term behaviour in a chemotaxis–fluid system with logistic source. Math. Models Methods Appl. Sci., 26(11):2071–2109, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Lankeit. A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci., 39(3):394–404, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Lankeit and M. Winkler. A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: Global solvability for large nonradial data. NoDEA Nonlinear Differential Equations Appl. 24(4): 24:49, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Li, Y. Wang, and Z. Xiang. Global existence and boundedness in a 2D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Commun. Math. Sci., 14(7):1889–1910, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Liu and Y. Wang. Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differential Equations, 262(10):5271–5305, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.-G. Liu and A. Lorz. A coupled chemotaxis–fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(5):643–652, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Lorz. Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci., 20(6):987–1004, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Nagai and T. Senba. Global existence and blow-up of radial solutions to a parabolic–elliptic system of chemotaxis. Adv. Math. Sci. Appl., 8(1):145–156, 1998.

    MathSciNet  MATH  Google Scholar 

  28. T. Nagai, T. Senba, and K. Yoshida. Global existence of solutions to the parabolic systems of chemotaxis. Sūrikaisekikenkyūsho Kōkyūroku, (1009):22–28, 1997.

  29. H. Sohr. The Navier–Stokes equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2001. An elementary functional analytic approach.

  30. C. Stinner and M. Winkler. Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl., 12(6):3727–3740, 2011.

    MathSciNet  MATH  Google Scholar 

  31. Y. Tao and M. Winkler. Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys., 67(6):Art. 138, 23, 2016.

  32. I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein. Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA, 102(7):2277–2282, 2005.

    Article  MATH  Google Scholar 

  33. Y. Wang. Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity. Bound. Value Probl., pages 2016:177, 24, 2016.

  34. Y. Wang, M. Winkler, and Z. Xiang. Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. to appear in: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. preprint.

  35. Y. Wang and Z. Xiang. Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differential Equations, 259(12):7578–7609, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Wang and Z. Xiang. Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differential Equations, 261(9):4944–4973, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Winkler. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differential Equations, 248(12):2889–2905, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Winkler. Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci., 34(2):176–190, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Winkler. Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Comm. Partial Differential Equations, 37(2):319–351, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Winkler. Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal., 211(2):455–487, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Winkler. Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differential Equations, 54(4):3789–3828, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Winkler. Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal., 47(4):3092–3115, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Winkler. Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(5):1329–1352, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Winkler. How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Amer. Math. Soc., 369(5):3067–3125, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Xue. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol., 70(1-2):1–44, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  46. Q. Zhang and Y. Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier–Stokes system. Discrete Contin. Dyn. Syst. Ser. B, 20:2751–2759, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  47. Q. Zhang and Y. Li. Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differential Equations, 259(8):3730–3754, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Zhao and S. Zheng. Global boundedness of solutions in a parabolic–parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl., 443(1):445–452, 2016.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lankeit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, T., Lankeit, J. & Mizukami, M. Singular sensitivity in a Keller–Segel-fluid system. J. Evol. Equ. 18, 561–581 (2018). https://doi.org/10.1007/s00028-017-0411-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-017-0411-5

Mathematics Subject Classification

Keywords

Navigation