Skip to main content
Log in

Modeling Earthquake Recurrence in the Himalayan Seismic Belt Using Time-Dependent Stochastic Models: Implications for Future Seismic Hazards

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Interest in and pertinent studies related to the seismic hazard in the Himalayan region have increased significantly since the instrumental era, and each damaging earthquake encourages its reestimation. In the work presented herein, the non-Poissonian probabilities of exceedance of magnitudes in a specified time in the future were investigated for different elapsed times based on the recurrence time intervals of past earthquakes in the Himalaya, using the Weibull, log-normal, gamma, and inverse Gaussian stochastic models. The whole Himalayan arc is divided into four seismogenic source zones, viz. the Northwestern Himalayas (zone 1), the Central Seismic Gap Region (zone 2), the Eastern Nepal and Sikkim (zone 3), and the Eastern Himalayas (zone 4), by considering approximately 380 years of seismological data. The suitability of each stochastic model for each zone was estimated using the Kolmogorov–Smirnov (K–S) test, to describe the different physical processes responsible for earthquake occurrence. The results show that the gamma, inverse Gaussian, log-normal, and inverse Gaussian models were most suitable for zones 1–4, respectively, for M ≥ 6.0. The cumulative probability of recurrence intervals reaches up to 90% in 30 years for zones 1 and 2, 49 years for zone 3, and 41 years for zone 4. The estimated conditional probability reaches 90% in 30 years in zone 1, 35 years in zone 2, and 50 years in zones 3 and 4. The most suitable models for M ≥ 7.0 were found to be the log-normal for zones 1, 2, and 3 and gamma for zone 4. The cumulative probability for M ≥ 7.0 reaches 90% in 85 years in zone 1, 86 years in zone 2, 93 years in zone 3, and 148 years in zone 4. The estimated conditional probabilities reach 90% in 80 years in zone 1, 90 years in both zone 2 and 3, and 150 years in zone 4. It is strongly recommended that model suitability be evaluated in complex regions such as the Himalaya before proceeding with seismic hazard assessments. The heterogeneous and complex tectonics of the Himalayas, differentiated plate motions, different stress release patterns (spatially and temporally), and locking/unlocking of faults/thrusts are some of the reasons responsible for the different probabilistic models describing the earthquake occurrence phenomena in these four zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe, K. (1981). Magnitudes of large shallow earthquakes from 1904 to 1980. Physics of the Earth and Planetary Interiors,27(1), 72–92.

    Article  Google Scholar 

  • Abe, K., & Noguchi, S. I. (1983a). Determination of magnitude for large shallow earthquakes 1898–1917. Physics of the Earth and Planetary Interiors,32(1), 45–59.

    Article  Google Scholar 

  • Abe, K., & Noguchi, S. I. (1983b). Revision of magnitudes of large shallow earthquakes, 1897–1912. Physics of the Earth and Planetary Interiors,33(1), 1–11.

    Article  Google Scholar 

  • Ambraseys, N. (2000). Reappraisal of north-Indian earthquakes at the turn of the 20th century. Current Science,79, 1237–1250.

    Google Scholar 

  • Ambraseys, N., & Douglas, J. J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159, 165–206.

    Article  Google Scholar 

  • Anagnos, T., & Kiremidjian, A. S. (1988). A review of earthquake occurrence models for seismic hazard analysis. Journal of Probabilistic Engineering Mechanics, 3, 3–11.

    Article  Google Scholar 

  • Ang, A., & Tang, W. (2003). Probability concept in engineering: Emphasis on applications to civil and environmental engineering (2nd ed., pp. 293–294). New Jersey: Wiley.

    Google Scholar 

  • Baird Smith, R. (1843). Memoir of Indian earthquakes—part I. Journal of the Asiatic Society of Bengal, 12(136), 257–293.

    Google Scholar 

  • Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Annals of Geophysics, 42(6), 1153–1164.

    Google Scholar 

  • Bilham, R., Larson, K., & Freymueller, J. (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature,386(6620), 61.

    Article  Google Scholar 

  • Bufe, C. G., Harsh, P. W., & Burford, R. O. (1977). Steady-state seismic slip—a precise recurrence model. Geophysical Research Letters,4(2), 91–94.

    Article  Google Scholar 

  • Bungum, H., Lindholm, C. D., & Mahajan, A. K. (2017). Earthquake recurrence in NW and central Himalaya. Journal of Asian Earth Sciences,138, 25–37.

    Article  Google Scholar 

  • Chingtham, P., Yadav, R. B. S., Chopra, S., Yadav, A. K., Gupta, A. K., & Roy, P. N. S. (2016). Time-dependent seismicity analysis in the Northwest Himalaya and its adjoining regions. Natural Hazards, 80(3), 1783–1800.

    Article  Google Scholar 

  • Chung, D. H., & Bernreuter, D. L. (1981). Regional relationships among earthquake magnitude scales. Reviews of Geophysics,19(4), 649–663.

    Article  Google Scholar 

  • Das, S., Gupta, I. D., & Gupta, V. K. (2006). A probabilistic seismic hazard analysis of northeast India. Earthquake Spectra,22(1), 1–27.

    Article  Google Scholar 

  • Dasgupta, S., Mukhopadhyay, M., & Nandy, D. R. (1987). Active transverse features in the central portion of the Himalaya. Tectonophysics,136(3–4), 255–264.

    Article  Google Scholar 

  • Davis, P. M., Jackson, D. D., & Kagan, Y. Y. (1989). The longer it has been since the last earthquake, the longer the expected time till the next? Bulletin of the Seismological Society of America,79(5), 1439–1456.

    Google Scholar 

  • Engdahl, E. R. (2002). Global seismicity: 1900–1999. International Handbook of Earthquake and Engineering Seismology, 665–690.

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America,64(5), 1363–1367.

    Google Scholar 

  • Gupta, I. D. (2006). Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dynamics and Earthquake Engineering,26(8), 766–790.

    Article  Google Scholar 

  • Gutenberg, B. (1956). Great earthquakes 1896–1903. Eos, Transactions American Geophysical Union,37(5), 608–614.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America,34(4), 185–188.

    Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth,84(B5), 2348–2350.

    Article  Google Scholar 

  • Hodges, K. V. (2000). Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin,112(3), 324–350.

    Article  Google Scholar 

  • Indian Standard, I. S. (2002). Criteria for earthquake resistant design of structures. 5th Revision, Bureau of Indian Standards, New Delhi, India.

  • Kagan, Y. Y. (1997). Statistical aspects of Parkfield earthquake sequences and Parkfield prediction experiment. Tectonophysics,270, 207–219.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104, 117–133.

    Article  Google Scholar 

  • Kagan, Y., & Knopoff, L. (1976). Statistical search for non-random features of the seismicity of strong earthquakes. Physics of the Earth and Planetary Interiors,12(4), 291–318.

    Article  Google Scholar 

  • Kaila, K. L., Gaur, V. K., & Narain, H. (1972). Quantitative seismicity maps of India. Bulletin of the Seismological Society of America,62(5), 1119–1132.

    Google Scholar 

  • Khattri, K. N. (1987). Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics,138(1), 79–92.

    Article  Google Scholar 

  • Khattri, K. N., Rogers, A. M., Perkins, D. M., & Algermissen, S. T. (1984). A seismic hazard map of India and adjacent areas. Tectonophysics,108(1–2), 93–134.

    Article  Google Scholar 

  • Knopoff, L. (1964). The statistics of earthquakes in Southern California. Bulletin of the Seismological Society of America,54(6A), 1871–1873.

    Google Scholar 

  • Knopoff, L., Levshina, T., Keilis-Borok, V. I., & Mattoni, C. (1996). Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California. Journal of Geophysical Research, 101, 5779–5796.

    Article  Google Scholar 

  • Lee, W. H., Wu, F. T., & Jacobsen, C. (1976). A catalog of historical earthquakes in China compiled from recent Chinese publications. Bulletin of the Seismological Society of America,66(6), 2003–2016.

    Google Scholar 

  • Mahajan, A. K., Thakur, V. C., Sharma, M. L., & Chauhan, M. (2010). Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Natural Hazards,53(3), 443–457.

    Article  Google Scholar 

  • Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America,100(2), 562–569.

    Article  Google Scholar 

  • Milne, J. (1911). A catalogue of desetructive earthquakes. In: A.Ad. 7 to A.D. 1899. Br. Assoc. Advan. Sci. Rept. Postmouth Meeting, 1911, App. 1, pp. 649–740.

  • Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science,189(4201), 419–426.

    Article  Google Scholar 

  • Nishenko, S. P., & Buland, R. (1987). A generic recurrence interval distribution for earthquake forecasting. Bulletin of the Seismological Society of America,77(4), 1382–1399.

    Google Scholar 

  • Nishenko, S. P., & Singh, S. K. (1987). Conditional probabilities for the recurrence of large and great interplate earthquakes along the Mexican subduction zone. Bulletin of the Seismological Society of America,77(6), 2095–2114.

    Google Scholar 

  • Oldham, T. (1883). A catalogue of Indian earthquakes from the earliest times to the end of 1869 AD (pp. 163–215). XIX: Memoirs of Geological Survey of India.

    Google Scholar 

  • Pacheco, J. F., & Sykes, L. R. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America,82(3), 1306–1349.

    Google Scholar 

  • Papaioannou, C. A., & Papazachos, B. C. (2000). Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bulletin of the Seismological Society of America,90(1), 22–33.

    Article  Google Scholar 

  • Parvez, I. A., & Ram, A. V. A. D. H. (1997). Probabilistic assessment of earthquake hazards in the north-east Indian peninsula and Hindukush regions. Pure and Applied Geophysics,149(4), 731–746.

    Article  Google Scholar 

  • Parvez, I. A., & Ram, A. V. A. D. H. (1999). Probabilistic assessment of earthquake hazards in the Indian subcontinent. Pure and Applied Geophysics,154(1), 23–40.

    Article  Google Scholar 

  • Patil, N. S., Das, J., Kumar, A., Rout, M. M., & Das, R. (2014). Probabilistic seismic hazard assessment of Himachal Pradesh and adjoining regions. Journal of Earth System Science,123(1), 49–62.

    Article  Google Scholar 

  • Quittmeyer, R. C., & Jacob, K. H. (1979). Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and southeastern Iran. Bulletin of the Seismological Society of America,69(3), 773–823.

    Google Scholar 

  • Raiverman, V. (1983). Basin geometry, Cenozoic sedimentation and hydrocarbon prospects in north western Himalaya and Indo-Gangetic plains. Petroleum Asia Journal: Petroliferous basins of India,6(4), 67–92.

    Google Scholar 

  • Rao, S. P., & Rao, R. B. (1979). Estimated earthquake probabilities in northeast India, Andaman-Nicobar Island. Mausam, 30, 267–273.

    Google Scholar 

  • Reid, H. F. (1911). The elastic-rebound theory of earthquakes. University of California Publications in Bulletin of the Department of Geology,6(19), 413–444.

    Google Scholar 

  • Rothe, J. R. (1969). The Seismicity of the Earth 1953–1965. UNESCO: Earth Sciences.

    Google Scholar 

  • Rikitake, T. (1991). Assessment of earthquake hazard in the Tokyo area, Japan. Tectonophysics, 199, 121–131.

    Article  Google Scholar 

  • Searle, M. P., Windley, B. F., Coward, M. P., Cooper, D. J. W., Rex, A. J., Rex, D., & Kumar, S. (1987). The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6), 678–701.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting M S and m b to moment magnitude. Journal of Seismology,10(2), 225–236.

    Article  Google Scholar 

  • Shanker, D., & Sharma, M. L. (1997). Statistical analysis of completeness of seismicity data of the Himalayas and its effect on earthquake hazard determination. Bulletin of the Indian Society of Earthquake Technology,34(3), 159–170.

    Google Scholar 

  • Shanker, D., & Sharma, M. L. (1998). Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files. Pure and Applied Geophysics,152(2), 267–279.

    Article  Google Scholar 

  • Sharma, M. L. (2003). Seismic hazard in the northern India region. Seismological Research Letters,74(2), 141–147.

    Article  Google Scholar 

  • Sharma, M. L., & Arora, M. K. (2005). Prediction of seismicity cycles in the Himalayas using artificial neural network. Acta Geophysica Polonica,53(3), 299.

    Google Scholar 

  • Sharma, M. L., & Kumar, R. (2010). Estimation and implementations of conditional probabilities of occurrence of moderate earthquakes in India. Indian Journal of Science and Technology,3(7), 808–817.

    Google Scholar 

  • Sharma, M. L., & Lindholm, C. (2012). Earthquake hazard assessment for Dehradun, Uttarakhand, India, including a characteristic earthquake recurrence model for the Himalaya Frontal Fault (HFF). Pure and Applied Geophysics,169(9), 1601–1617.

    Article  Google Scholar 

  • Sharma, M. L., & Malik, S. (2006). Probabilistic seismic hazard analysis and estimation of spectral strong ground motion on bed rock in north east India. In 4th International Conference on Earthquake Engineering, Taipei, Taiwan October 12–13, 2006.

  • Sharma, M. L., & Shanker, D. (2001). Estimation of seismic hazard parameters for the Himalayas and its vicinity from mix data files. ISET Journal of Earthquake Technology,38(2–4), 93–102.

    Google Scholar 

  • Shimazaki, K., & Nakata, T. (1980). Time-predictable recurrence model for large earthquakes. Geophysical Research Letters,7(4), 279–282.

    Article  Google Scholar 

  • Sil, A., Sitharam, T. G., & Haider, S. T. (2015). Probabilistic models for forecasting earthquakes in the northeast region of India. Bulletin of the Seismological Society of America,105(6), 2910–2927.

    Article  Google Scholar 

  • Sitharam, T. G., & Kolathayar, S. (2013). Seismic hazard analysis of India using areal sources. Journal of Asian Earth Sciences,62, 647–653.

    Article  Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st international conference on microzonazion, Seattle (Vol. 2, pp. 897–910).

  • Sykes, L. R., & Quittmeyer, R. C. (1981). Repeat times of great earthquakes along simple plate boundaries. Earthquake Prediction,4, 217–247.

    Google Scholar 

  • Tripathi, J. N. (2006). Probabilistic assessment of earthquake recurrence in the January 26, 2001 earthquake region of Gujrat, India. Journal of Seismology,10(1), 119–130.

    Article  Google Scholar 

  • Uhrhammer, R. A. (1986). Characteristics of northern and central California seismicity. Earthquake Notes,57(1), 21.

    Google Scholar 

  • Utsu, T. (1984). Estimation of parameters for recurrence models of earthquakes. Bulletin of the Earthquake Research Institute,59, 53–55.

    Google Scholar 

  • Weihull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics,18, 290–293.

    Google Scholar 

  • Yadav, R. B. S., Bayrak, Y., Tripathi, J. N., Chopra, S., Singh, A. P., & Bayrak, E. (2012). A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure and Applied Geophysics,169(9), 1619–1639.

    Article  Google Scholar 

  • Yadav, R. B. S., Tripathi, J. N., Rastogi, B. K., & Chopra, S. (2008). Probabilistic assessment of earthquake hazard in Gujarat and adjoining region of India. Pure and Applied Geophysics,165(9–10), 1813–1833.

    Article  Google Scholar 

  • Yadav, R. B. S., Tripathi, J. N., Rastogi, B. K., Das, M. C., & Chopra, S. (2010). Probabilistic assessment of earthquake recurrence in northeast India and adjoining regions. Pure and Applied Geophysics,167(11), 1331–1342.

    Article  Google Scholar 

  • Yadav, R. B. S., Tripathi, J. N., Shanker, D., Rastogi, B. K., Das, M. C., & Kumar, V. (2011). Probabilities for the occurrences of medium to large earthquakes in northeast India and adjoining region. Natural Hazards,56(1), 145–167.

    Article  Google Scholar 

  • Yadav, R. B. S., Tsapanos, T. M., Bayrak, Y., & Koravos, G. C. H. (2013). Probabilistic appraisal of earthquake hazard parameters deduced from a Bayesian approach in the northwest frontier of the Himalayas. Pure and Applied Geophysics, 170(3), 283–297.

    Article  Google Scholar 

  • Yadav, R. B. S., Koravos, G. C. H., Tsapanos, T. M., & Vougiouka, E. G. (2015). A probabilistic estimate of most perceptible earthquake magnitudes in the NW Himalaya and adjoining regions. Pure and Applied Geophysics, 172(2), 197–212.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge various sources, namely USGS, IMD, and ISC, used to compile the earthquake catalogue, and are also grateful to Dr. I. D. Gupta, who helped in compiling the catalogue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Bajaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, S., Sharma, M.L. Modeling Earthquake Recurrence in the Himalayan Seismic Belt Using Time-Dependent Stochastic Models: Implications for Future Seismic Hazards. Pure Appl. Geophys. 176, 5261–5278 (2019). https://doi.org/10.1007/s00024-019-02270-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02270-9

Keywords

Navigation