Skip to main content
Log in

Empirical Global Relations Converting M S and m b to Moment Magnitude

  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., 1981, Magnitudes of large shallow earthquakes from 1904 to 1980, Phys. Earth Planet. Int. 27, 72–92.

    Article  Google Scholar 

  • Anderson, J.A. and Wood, H.O., 1924, A torsion seismometer, J. Opt. Soc. Am. Rev. Sci. Inst. 8, 817–822.

    Article  Google Scholar 

  • Anderson, J.A. and Wood, H.O., 1925, Description and theory of the torsion seismometer, Bull. Seism. Soc. Am. 15, 1–72.

    Google Scholar 

  • Christoskov, L., Kondorskaya, N.V. and Vanek, J., 1985, Magnitude calibrating functions for a multidimensional homogeneous system of reference stations, Tectonophysics 118, 213–226.

    Article  Google Scholar 

  • Dziewonski, A.M., Chou, T.A. and Woodhouse, J.H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. 86(2), 825–852.

    Article  Google Scholar 

  • Giardini, D., 1984, Systematic analysis of deep seismicity – 200 centroid-moment tensor solutions for earthquakes between 1977 and 1980, J.R. Geoph. Astr. Soc. 77, 883–914.

    Google Scholar 

  • Grünthal, G. and Wahlström, R., 2003, An M W based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions, J. Seismol. 7(4), 507–531.

    Article  Google Scholar 

  • Gutenberg, B., 1945a, Amplitudes of surface waves and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 3–12.

    Google Scholar 

  • Gutenberg, B., 1945b, Amplitude of P, PP, and S and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 57–69.

    Google Scholar 

  • Gutenberg, B., 1945c, Magnitude determination for deep-focus earthquakes, Bull. Seism. Soc. Am. 35, 117–130.

    Google Scholar 

  • Gutenberg, B. and Richter, C.F., 1956, Magnitude and energy of earthquakes, Ann. Geofis. 9, 1–15.

    Google Scholar 

  • Hanks, T. and Kanamori, H., 1979, A moment magnitude scale, J. Geophys. Res. 84, 2348–2350.

    Article  Google Scholar 

  • Harvard Seismology (HRVD), 2004, CMT catalogue, http://www.seismology.harvard.edu/CMTsearch.html

  • Heaton, T., Tajima, F. and Mori, A., 1986, Estimating ground motions using recorded accelerograms, Surv. Geophys. 8, 25–83.

    Article  Google Scholar 

  • Herak, M. and Herak, D., 1993, Distance dependence of M S and calibrating function for 20-second Rayleigh waves, Bull. Seism. Soc. Am. 83, 1881–1892.

    Google Scholar 

  • International Seismological Centre (ISC), 2004, On-line {Bulletin}, Internat. Seis. Cent., Thatcham, United Kingdom, http://www.isc.ac.uk/Bull.

  • Johnston, A. C., 1996, Seismic moment assessment of earthquakes in stable continental regions – I. Instrumental seismicity, Geophys. J. Int. 124, 381–414.

    Article  Google Scholar 

  • Kanamori, H., 1977, The energy release in great earthquakes, J. {Geophys.} Res. 82, 2981–2987.

    Article  Google Scholar 

  • Kanamori, H., 1983, Magnitude scale and quantification of earthquakes, Tectonophysics 93, 185–199.

    Article  Google Scholar 

  • Karnik, V., 1968, Seismicity of the European area, Part 1, { Academia Prague and Reidel Dordrecht}.

  • Karnik, V., 1971, Seismicity of the European area, Part 2, { Academia Prague and Reidel Dordrecht}.

  • Karnik, V., 1973, Magnitude differences, Pure Appl. Geophys. 103(II) 362–369.

  • Karnik, V., 1996, Seismicity of Europe and the Mediterranean. In: Klima, K. (ed.), Academy of Sciences of the Czech Republic, Geophysical Institute, 28 pp. plus earthquake catalogue.

  • Kim, W.-Y., Wahlström, R. and Uski, M., 1989, Regional spectral scaling relations of source parameters for earthquakes in the Baltic Shield, Tectonophysics 166, 151–161.

    Article  Google Scholar 

  • Kiratzi, A.A., 1984, Magnitude scales for earthquakes in the broader Aegean area, Ph.D. Thesis, Aristotle University of Thessaloniki, 189 pp.

  • Kiratzi, A.A. and Papazachos, B.C., 1984, Magnitude scales for earthquakes in Greece, Bull. Seism. Soc. Am. 74, 969–985.

    Google Scholar 

  • Kiratzi, A.A., Karakaisis, G.F., Papadimitriou, E.E. and Papazachos, B.C., 1985, Seismic source-parameter relations for earthquakes in Greece, Pure Appl. Geophys. 123, 27–41.

    Article  Google Scholar 

  • Margaris, B.N. and Papazachos, C.B., 1999, Moment-magnitude relations based on strong-motion records in Greece, Bull. Seism. Soc. Am. 89, 442–455.

    Google Scholar 

  • Murphy, J.R., Stevens, J.L., Bennett, T.J., Barker, B.W. and {Marshall,} M.E., 2001, Development of improved seismic magnitude measures for use at the International Data Center, Final technical report, 135pp.

  • Murphy, J.R. and Barker, B.W., 2003, Revised distance and depth corrections for use in the estimation of short-period P-wave magnitudes, Bull. Seism. Soc. Am. 93, 1746–1764.

    Article  Google Scholar 

  • National Earthquake Information Center (NEIC), 2004, On-line {Bulletin,} USGS/NEIC (PDE) 1973 – Present, http://neic.usgs.gov/.

  • Nuttli, O.W., 1983, Average seismic source parameter relations for mid-plate earthquakes, Bull. Seism. Soc. Am. 73, 519–535.

    Google Scholar 

  • Nuttli, O.W., 1985, Average seismic source-parameter relations for plate-margin earthquakes, Tectonophysics 118, 161–174.

    Article  Google Scholar 

  • Nuttli, O.W. and Kim, S.G., 1975, Surface-wave magnitudes of Eurasian earthquakes and explosions, Bull. Seism. Soc. Am. 65, 693–709.

    Google Scholar 

  • Panza, G.F., Duda, S.J., Cernobori, L. and Herak, M., 1989, Gutenberg's surface-wave magnitude calibrating function: Theoretical basis from synthetic seismograms, Tetonophysics 166, 35–43.

    Article  Google Scholar 

  • Papanastasiou, D., 1989, Detectability and accuracy of local parameters determination by the seismographic network of the National Observatory of Athens., Ph.D. Thesis, Univ. of Athens, 225 pp.

  • Papazachos, B.C., Kiratzi, A.A. and Karakostas, B.G., 1997, Toward a homogeneous moment-magnitude determination for earthquakes in Greece and surrounding area, Bull. Seism. Soc. Am. 87, 474–483.

    Google Scholar 

  • Papazachos, B.C., Karakostas, V.G., Kiratzi, A.A., Margaris, B.N., Papazachos, C.B. and Scordilis, E.M., 2002, Uncertainties in the estimation of earthquake magnitudes in Greece, J. Seismol. 6, 557–570.

    Article  Google Scholar 

  • Patton, H.J. and Walter, W.R., 1993, Regional moment: Magnitude relations for earthquakes and explosions, Geoph. Rec. Lett. 20(4), 277–280.

    Google Scholar 

  • Patton, H.J. and Walter, W.R., 1994, Erratum: “Regional moment: Magnitude relations for earthquakes and explosions” [Geophysical Research Letters, 20, 277–280 (1993)], Geoph. Rec. Lett. 21(8), 743–743.

  • Patton, H.J. and Randall, G.E., 2002, On the causes of biased estimates of seismic moment for earthquakes in central Asia, J. Geophys. Res. 107(B11), 2302.

    Google Scholar 

  • Rezapour, M. and Pearce, R.G., 1998, Bias in surface-wave magnitude M S due to inadequate distance, Bull. Seism. Soc. Am. 88, 43–61.

    Google Scholar 

  • Richter, C., 1935, An instrumental earthquake magnitude scale, Bull. Seism. Soc. Am. 25, 1–32.

    Google Scholar 

  • Scordilis, E., 1985, A microseismicity study of the Serbomacedonian massif and the surrounding area, Ph.D. Thesis, University of Thessaloniki, 250 pp.

  • Shedlock, K.M., 1999, Seismic hazard map of North and Central America and the Caribbean, Ann. Geofis. 42, 977–997.

    Google Scholar 

  • Thomas, J.H., Marshall, P.D. and Douglas, E., 1978, Rayleigh-wave amplitudes from earthquakes in range 0–150 degrees, Bull. Seism. Soc. Am. 53, 191–200.

    Google Scholar 

  • Uhrhammer, R. and Collins, E., 1990, Synthesis of Wood Asnderson seismograms from broadband digital records, Bull. Seism. Soc. Am. 80, 702–716.

    Google Scholar 

  • Uhrhammer, R.A., Loper, S.J. and Romanowicz, B., 1996, Determination of local magnitude using BDSN broadband records, Bull. Seism. Soc. Am. 86, 1314–1330.

    Google Scholar 

  • United States Geological Survey – Source Parameter Database (2004), http://neic.usgs.gov/neis/sopar

  • Utsu, T., 2002, Relationships between magnitude scales, {International} Handbook of Earthquake and Engineering Seismology 81, 733–746.

    Article  Google Scholar 

  • Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Y.V., Savarensky, E.F., Soloviev, S.L. and Shebalin, N.V., 1962, Standardization of magnitude scales, Bull. Acad. Sci. USSR {Geophys.} Ser. 108–111.

  • Veith, K.F. and Clawson, G.E., 1972, Magnitude from short-period P-wave data, Bull. Seism. Soc. Am. 62, 435–452.

    Google Scholar 

  • Wahlström, R. and Grünthal, G., 2000, Probabilistic seismic hazard assessment (horizontal PGA) for Sweden, Finland and Denmark using different logic tree approaches, Soil Dyn. Earthq. Engrg. 20, 45–58.

    Article  Google Scholar 

  • Wessel, P. and Smith, W.H.F., 1995, New version of Generic Mapping Tools Released, EOS 76, 697–723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Scordilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scordilis, E.M. Empirical Global Relations Converting M S and m b to Moment Magnitude. J Seismol 10, 225–236 (2006). https://doi.org/10.1007/s10950-006-9012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-006-9012-4

Keywords

Navigation