Skip to main content
Log in

Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Determination of the frequency of large earthquakes is of paramount importance for seismic risk assessment as large events contribute to significant fraction of the total deformation and these long return period events with low probability of occurrence are not easily captured by classical distributions. Generally, with a small catalogue these larger events follow different distribution function from the smaller and intermediate events. It is thus of special importance to use statistical methods that analyse as closely as possible the range of its extreme values or the tail of the distributions in addition to the main distributions. The generalised Pareto distribution family is widely used for modelling the events which are crossing a specified threshold value. The Pareto, Truncated Pareto, and Tapered Pareto are the special cases of the generalised Pareto family. In this work, the probability of earthquake occurrence has been estimated using the Pareto, Truncated Pareto, and Tapered Pareto distributions. As a case study, the Himalayas whose orogeny lies in generation of large earthquakes and which is one of the most active zones of the world, has been considered. The whole Himalayan region has been divided into five seismic source zones according to seismotectonic and clustering of events. Estimated probabilities of occurrence of earthquakes have also been compared with the modified Gutenberg–Richter distribution and the characteristics recurrence distribution. The statistical analysis reveals that the Tapered Pareto distribution better describes seismicity for the seismic source zones in comparison to other distributions considered in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe, K. (1981). Magnitudes of large shallow earthquake from 1904 to 1980. Physics of the Earth and Planetary Interiors, 27, 72–92.

    Article  Google Scholar 

  • Abe, K., & Naguchi, S. (1983a). Determination of magnitude for large shallow earthquake 1898–1917. Physics of the Earth and Planetary Interiors, 32, 45–59.

    Article  Google Scholar 

  • Abe, K., & Naguchi, S. (1983b). Revision of magnitude for large shallow earthquake 1897–1912. Physics of the Earth and Planetary Interiors, 33, 1–11.

    Article  Google Scholar 

  • Ader, T., Avouac, J., Jing, L., Hélène, L., Bollinger, L., Galetzka, J., et al. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research, 117, B04403.

    Article  Google Scholar 

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a–bM and its confidence limits. Bulletin Earthquake Research Institute University of Tokyo, 43, 237–239.

    Google Scholar 

  • Aki, K. (1983). Seismological evidence in support of the existence of “Characteristic Earthquakes”. Earthquake Notes, 54, 60–61.

    Google Scholar 

  • Ambraseys, N. (2000). Reappraisal of north-Indian earthquakes at the turn of the 20th century. Current Science, 79, 101–114.

    Google Scholar 

  • Ambraseys, N., & Douglas, J. J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159, 165–206.

    Article  Google Scholar 

  • Anderson, J. G., & Luco, J. E. (1983). Consequences of slip rate constraints on earthquake occurrence relation. Bulletin of the Seismological Society of America, 73, 471–496.

    Google Scholar 

  • Baird Smith, R. (1843a). Memoir of Indian earthquakes—part I. Journal of the Asiatic Society of Bengal, 12(136), 257–293.

    Google Scholar 

  • Baird Smith, R. (1843b). Memoir of Indian earthquakes—part II. Journal of the Asiatic Society of Bengal, 12(144), 1029–1056.

    Google Scholar 

  • Barman, P., Jade, S., Shrungeshwara, T. S., Kumar, A., Bhattacharyya, S., Ray, J. D., Jagannathan, S., & Jamir, W. M. (2017). Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002–2013) of GPS measurements. International Journal of Earth Sciences, 106(6), 2025–2038.

    Article  Google Scholar 

  • Besse, J., & Courtillot, V. (1988). Paleogeographic maps of the continents bordering the Indian Ocean since the early Jurassic. Journal of Geophysical Research, 93(B10), 11791–11808.

    Article  Google Scholar 

  • Bilham, R., Larson, K., Freymueller, J., & Project ldylhim Members. (1997). GPS measurements of presentday convergence across the Nepal Himalaya. Nature, 386, 61–64.

    Article  Google Scholar 

  • Bird, P., & Kagan, Y. Y. (2004). Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bulletin of the Seismological Society of America, 94(6), 2380–2399.

    Article  Google Scholar 

  • Chung, D. H., & Bernreuter, D. L. (1981). Regional relationships among earthquake magnitude scales. Reviews of Geophysics and Space Physics, 19(4), 649–663.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51, 661–703.

    Article  Google Scholar 

  • Coles, S. (2001). An introduction to statistical modelling of extreme values. London: Springer Series in Statistics.

    Book  Google Scholar 

  • Cosentino, P., Ficara, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in the earthquake statistics. Bulletin of the Seismological Society of America, 67, 1615–1623.

    Google Scholar 

  • Deemer, W. L., & Votaw, D. F. (1955). Estimation of parameters of truncated or censored exponential distributions. The Annals of Mathematical Statistics, 26, 498–504.

    Article  Google Scholar 

  • Dewey, J. F., Cande, S., & Pitman, W. C. (1989). The tectonic evolution of the India/Eurasia collision zone. Ecolgae Geologicae Halvetiae, 82(3), 717–734.

    Google Scholar 

  • Engdahl, E. R., & Villaseñor, A. (2002). Global Seismicity: 1900–1999, chapter 41. In: Int. Handbook of Earthq. and Eng. Seism., vol. 81A, pp. 665–690.

  • Gutenberg, B. (1956). Great earthquakes 1896–1903. EOS, 37, 608–614.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 1985–1988.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth (2nd ed.). Princeton: Princeton Press.

    Google Scholar 

  • Hanks, T. H., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.

    Article  Google Scholar 

  • Holt, W. E., Chamot-Rooke, N., Le Pichon, X., Haines, A. J., Shen-Tu, B., & Ren, J. (2000). Velocity field in Asia inferred from quaternary fault slip rates and global positioning system observations. Journal of Geophysical Research Solid Earth, 105, 19185–19209.

    Article  Google Scholar 

  • Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bulletin Earthquake Research Institute University of Tokyo, 17, 443–478.

    Google Scholar 

  • Jackson, D. D., & Kagan, Y. Y. (1999). Testable earthquake forecasts for 1999. Seismological Research Letters, 70(4), 393–403.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991). Likelihood analysis of earthquake catalogues. Geophysical Journal International, 106(1), 135–148.

    Article  Google Scholar 

  • Kagan, Y. Y. (1993). Statistics of characteristic earthquakes. Bulletin of the Seismological Society of America, 83(1), 7–24.

    Google Scholar 

  • Kagan, Y. Y. (1994). Observational evidence for earthquakes as a nonlinear dynamic process. Physica D Nonlinear Phenomena, 77, 160–192.

    Article  Google Scholar 

  • Kagan, Y. Y. (1996). Comment on “The Gutenberg–Richter or characteristic earthquake distribution, which is it? By Steven G. Wesnousky. Bulletin of the Seismological Society of America, 86(1a), 274–285.

    Google Scholar 

  • Kagan, Y. Y. (1997). Earthquake size distribution and earthquake insurance. Communications in statistics. Stachastic Models, 13(4), 775–797.

    Article  Google Scholar 

  • Kagan, Y. Y. (1999). Universality of seismic moment–frequency relation. Pure and Applied Geophysics, 155, 537–573.

    Article  Google Scholar 

  • Kagan, Y. Y. (2002a). Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148, 520–541.

    Article  Google Scholar 

  • Kagan, Y. Y. (2002b). Seismic moment distribution revisited: II. Moment conservation principle. Geophysical Journal International, 149, 731–754.

    Article  Google Scholar 

  • Kagan, Y. Y., & Schoenberg, F. (2001). Estimation of the upper cut-off parameter for the Tapered Pareto distribution. Journal of Applied Probability, 38A, 158–175. (Supplement: Festscrift for David Vere-Jones, D. Daley, editor).

    Article  Google Scholar 

  • Kijko, A., & Graham, G. (1998). Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: Estimation of maximum regional magnitude Mmax. Pure and Applied Geophysics, 152, 413–442.

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I, Utilization of extreme and complete catalogues with different threshold magnitudes. Bulletin of the Seismological Society of America, 79, 645–654.

    Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II, incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82, 120–134.

    Google Scholar 

  • Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287.

    Article  Google Scholar 

  • Knopoff, L., Kagan, Y., & Knopoff, R. (1982). b-values for foreshocks and aftershocks in real and simulated earthquake sequences. Bulletin of the Seismological Society of America, 72(5), 1663–1675.

    Google Scholar 

  • Kundu, B., Yadav, R. K., Bali, B. S., Chowdhury, S., & Gahalaut, V. K. (2014). Oblique convergence and slip partitioning in the NW Himalaya: Implications from GPS measurements. Tectonics, 33, 2013–2014.

    Article  Google Scholar 

  • Laherrere, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: ‘‘Fat tails’’ with characteristic scales. European Physical Journal B Condensed Matter and Complex Systems, 2, 525–539.

    Article  Google Scholar 

  • Lee, W. H. K., Wu, F. T., & Jacobsen, C. (1976). A catalog of historical earthquakes in China compiled from recent Chinese publications. Bulletin of the Seismological Society of America, 66, 2003–2016.

    Google Scholar 

  • Main, I., & Burton, P. W. (1984). Information Theory and the Earthquakes Frequency magnitude Distribution. Bulletin of the Seismological Society of America, 74, 1409–1426.

    Google Scholar 

  • Main, Y., Irving, D., Musson, R., & Reading, A. (1999). Constraints on frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates. Geophysical Journal International, 137, 535–550.

    Article  Google Scholar 

  • Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2), 562–569.

    Article  Google Scholar 

  • McCaffrey, R. (1997). Statistical significance of the seismic coupling coefficient. Bulletin of the Seismological Society of America, 87, 1069–1073.

    Google Scholar 

  • Milne, J. (1911). A catalogue of desetructive earthquakes. In: A.Ad. 7 to A.D. 1899. Br. Assoc. Advan. Sci. Rept. Postmouth Meeting, 1911, App.1, pp. 649–740

  • Molchan, G. M. & V.M. Podgaetskaya (1973). Parameters of global seismicity, I in computational seismology, 6, Kelisborok, V.I., pp. 44–66, Nauka, Mascow.

  • Ogata, Y., & Katsura, K. (1993). Analysis of temporal and special heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Journal International, 113, 727–738.

    Article  Google Scholar 

  • Oldham, T. (1883). A catalogue of Indian earthquakes from the earliest time to the end of A.D. 1869. Memoirs of the Geological Survey of India, 29, 163–215.

    Google Scholar 

  • Pacheco, J. F., & Sykes, L. R. (1992). Seiismic Moment catalog of large earthquake, 1900 to 1989. Bulletin of the Seismological Society of America, 82, 1306–1349.

    Google Scholar 

  • Papageorgiou, A. A., & Aki, K. (1983). A specific barrier model for the quantitative description of inhomogenous faulting and the prediction of strong ground motion. Bulletin of the Seismological Society of America, 73, 693–722.

    Google Scholar 

  • Pisarenko, V. F. (1991). Statistical evaluation of maximum possible magnitude. Izvestia, Earth Physics, 27, 757–763.

    Google Scholar 

  • Pisarenko, V. F., & Rodkin, M. V. (2007). Distributions with heavy tails: Application to the analysis of catastrophes, computational seismology issue 38, 242 p. Pure and Applied Geophysics, 155, 509–535.

    Google Scholar 

  • Pisarenko, V. F., & Sornette, D. (2003). Characterization of the frequency of extreme earthquake events by the generalized pareto distribution. Pure and Applied Geophysics, 160(2003), 2343–2364.

    Article  Google Scholar 

  • Pisarenko, V. F., & Sornette, D. (2004). Statistical detection and characterization of a deviation from the Gutenberg–Richter distribution above magnitude 8. Pure and Applied Geophysics, 161, 839–864.

    Article  Google Scholar 

  • Quittmeyer, R. C., & Jacob, K. H. (1979). Historical and modern seismicity of Pakistan, Afghanistan, Northwest India, and Southeastern Iran. Bulletin of the Seismological Society of America, 69(3), 773–823.

    Google Scholar 

  • Rothe, J. R. (1969). The Seismicity of the Earth 1953–1965. Earth Sciences: UNESCO.

    Google Scholar 

  • Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681–5698.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting M S and m b to moment magnitude. Journal of Seismology, 10, 225–236.

    Article  Google Scholar 

  • Shanker, D., & Sharma, M. L. (1997). Statistical analysis of completeness of seismicity data of the Himalayas and its effect on earthquake hazard determination. Bulletin of the Indian Society of Earthquake Technology, 34(3), 159–170.

    Google Scholar 

  • Sharma, M. L. (2003). Seismic hazard in Northern India region. Seismological Research Letters, 74(2), 140–146.

    Article  Google Scholar 

  • Sharma, M. L., & Arora, M. K. (2005). Prediction of seismicity cycles in the Himalayas using artificial neural network. Acta Geophysica Polonica, 53(3), 299–309.

    Google Scholar 

  • Sharma, M. L., & Lindholm, C. (2012). Earthquake hazard assessment for Dehradun, Uttarakhand, India, including a characteristic earthquake recurrence model for the Himalaya Frontal Fault (HFF). Pure and Applied Geophysics (PAGEOPH), 169, 1601–1617.

    Article  Google Scholar 

  • Sornette, D., Knopoff, L., Kagan, Y. Y., & Vanneste, C. (1996). Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes. Journal of Geophysical Research, 101, 13883–13893.

    Article  Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Procs. Int. Conf. on Microzonation, Seattle, Washington, vol. 2, pp. 897–910.

  • Swan, F. H., III, Schwartz, D. P., & Cluff, L. S. (1980). Recurrence of moderate-to-large magnitude earthquakes produced by surface faulting on the Wasatch fault zone, Utah. Bulletin of the Seismological Society of America, 70, 1431–1462.

    Google Scholar 

  • Uhrhammer, R. (1986). Characterization of northern and central California Seismicity. Earthquake Notes, 57(1), 21.

    Google Scholar 

  • Utsu, T. (1965). A method for determining the value of b in the formula log n = a – bM showing the magnitude frequency relation for earthquakes. Geophysical Bulletin Hokkaido University, 13, 99–103.

    Google Scholar 

  • Utsu, T. (1999). Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pure and Applied Geophysics, 155(2–4), 509–535.

    Article  Google Scholar 

  • Vere-Jones, D., Robinson, R., & Yang, W. Z. (2001). Remarks on the accelerated moment release model: Problems of model formulation, simulation and estimation. Geophysical Journal International, 144, 517–531.

    Article  Google Scholar 

  • Wang, Q., Pei-Zhen Zhang, J. T., Freymueller, R., Bilham, K. M., Larson, X., Lai, X., et al. (2001). Present-day crustal deformation in china constrained by global positioning system measurements. Science, 294, 574.

    Article  Google Scholar 

  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.

    Article  Google Scholar 

  • Wu, Z. L. (2000). Frequency-size distribution of global seismicity seen from broad-band radiated energy. Geophysical Journal International, 142, 59–66.

    Article  Google Scholar 

  • Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America, 75(4), 939–964.

    Google Scholar 

Download references

Acknowledgements

The earthquake catalogue has been compiled from various sources, namely IMD, USGS, NEIC, and ISC. The help of Dr. I. D. Gupta in compiling the catalogue for the study is acknowledged thankfully. We would like to show our gratitude to Dr. Conrad C. Lindholm who has very thoroughly reviewed the manuscript which has technically improved the article a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukat Lal Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, C., Sharma, M.L. Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region. Pure Appl. Geophys. 174, 4313–4327 (2017). https://doi.org/10.1007/s00024-017-1667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1667-y

Keywords

Navigation