Skip to main content
Log in

A Study of Near-Surface Boundary Layer Characteristics During the 2015 Chennai Flood in the Context of Urban-Induced Land Use Changes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Chennai metropolitan region along with the northern part of Tamil Nadu and southern part of Andhra Pradesh witnessed extreme rainfall events leading to urban flooding during November–December 2015. In order to understand the near-surface and boundary layer (BL) characteristics during the event in the context of land use and land cover (LULC) change, three decades of satellite images are analysed. In addition, the Weather Research Forecasting (WRF) model is used to perform finer-scale simulations, considering different land use (LU) data sets as input. For this purpose, LU datasets from the United Sates Geological Survey (USGS), Moderate Resolution Imaging Spectro-radiometer (MODIS), and Indian Space Research Organization (ISRO) are considered along with the Noah and Noah multi-physics (NMP) land surface model (LSM). Impact of Noah-based LSMs on the near-surface and BL characteristics over Chennai are examined besides the change in LULC during the flood event. Significant improvement of 1–2 °C is obtained in case of near-surface temperature in the simulation considering recent LU and the NMP LSM. Some WRF-simulated variables like near-surface temperature, relative humidity (RH) and convective available potential energy (CAPE) are compared with available observations for qualitative and quantitative analysis. The distorted variations of the near-surface and boundary layer parameters including temperature, BL height, sensible heat flux and CAPE, are mostly observed during phases with prevalent low-pressure systems due to the presence of large-scale forcing. In other phases, (where low-pressure systems are absent), with dominance of localised effects, noticeably higher values of the variables viz. near-surface air temperature, wind speed, RH and moisture flux, CAPE and BL height are attributed to the increased impervious layers inside the city boundary due to urbanization and its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aditi, & Sharan, M. (2007). Analysis of weak wind stable conditions from the observations of the land surface processes experiment at Anand in India. Pure and Applied Geophysics, 164, 1811–1837.

    Article  Google Scholar 

  • Aithal, B. H., & Ramachandra, T. V. (2016). Visualization of urban growth pattern in Chennai using geoinformatics and spatial metrics. Journal of the Indian Society of Remote Sensing, 44(4), 617–633.

    Article  Google Scholar 

  • Bhat, G. S., Gadgil, S., Kumar, P. H., Kalsi, S. R., Madhusoodanan, P., Murty, V. S. N., et al. (2001). BOBMEX: The Bay of Bengal monsoon experiment. Bulletin of the American Meteorological Society, 82(10), 2217–2243.

    Article  Google Scholar 

  • Bhati, S., & Mohan, M. (2016). WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions. Theoretical and Applied Climatology, 126(1–2), 385–400.

    Article  Google Scholar 

  • Bian, T., Ren, G., & Yue, Y. (2017). Effect of urbanization on land-surface temperature at an urban climate station in North China. Boundary-Layer Meteorology, 165(3), 553–567. https://doi.org/10.1007/s10546-017-0282-x.

    Article  Google Scholar 

  • Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: Three cases studies. Atmospheric Environment, 34, 507–516.

    Article  Google Scholar 

  • Census. (2011). Available online at: http://www.census2011.co.in/urbanagglomeration.php. Accessed Jan 2017.

  • Chang, H. I., Kumar, A., Niyogi, D., Mohanty, U. C., Chen, F., & Dudhia, J. (2009). The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Global and Planetary Change, 67(1), 87–103.

    Article  Google Scholar 

  • Chaudhuri, S., & Middey, A. (2013). Study of near-surface boundary layer characteristics during pre-monsoon seasons using micrometeorological tower observations. Atmósfera, 26(1), 125–144.

    Article  Google Scholar 

  • Dixon, P. G., & Mote, T. L. (2003). Patterns and causes of Atlanta’s urban heat island-initiated precipitation. Journal of Applied Meteorology and Climatology, 42, 1273–1284.

    Article  Google Scholar 

  • Fonseca, R., Koh, T.-Y., & Teo, C.-K. (2018). Multi-scale interaction in a high-resolution tropical-belt experiment and observations. Climate Dynamics. https://doi.org/10.1007/s00382-018-4332-y.

    Article  Google Scholar 

  • Garratt, J. R. (1994). Review: The atmospheric boundary layer. Earth-Science Reviews, 37(1–2), 89–134.

    Article  Google Scholar 

  • Goel, M., & Srivastava, H. N. (1990). Monsoon trough boundary layer experiment (MONTBLEX). Bulletin of the American Meteorological Society, 71(11), 1594–1600.

    Article  Google Scholar 

  • Göndöcs, J., Breuer, H., Pongrácz, R., & Bartholy, J. (2017). Urban heat island mesoscale modelling study for the Budapest agglomeration area using the WRF model. Urban Climate, 21, 66–86.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Freedman, F., Sharan, M., & Krishna, T. R. (2005). A model study of the strong and weak wind, stably stratified nocturnal boundary layer: Influence of gentle slopes. Pure and Applied Geophysics, 162(10), 1795–1809.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Krishna, T. V. B. P. S. R., & Sharan, M. (2003). Some signatures of urban heat patches in southern India. Proceedings-Indian National Science Academy Part-A, 69(5), 603–614.

    Google Scholar 

  • Gopalakrishnan, S. G., Sharan, M., McNider, R. T., & Singh, M. P. (1998). Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. Journal of the Atmospheric Sciences, 55(6), 954–960.

    Article  Google Scholar 

  • Hignett, P. (1991). Observations of diurnal variation in a cloud-capped marine boundary layer. Journal of the Atmospheric Sciences, 48(12), 1474–1482.

    Article  Google Scholar 

  • Huang, Q. Q., Cai, X. H., Song, Y., & Kang, L. (2016). A numerical study of sea breeze and spatiotemporal variation in the coastal atmospheric boundary layer at Hainan Island, China. Boundary-Layer Meteorology, 161(3), 543–560.

    Article  Google Scholar 

  • Igri, P. M., Tanessong, R. S., Vondou, D. A., Panda, J., Garba, A., Mkankam, F. K., et al. (2018). Assessing the performance of WRF model in predicting high-impact weather conditions over Central and Western Africa: An ensemble-based approach. Natural Hazards, 93(3), 1565–1587.

    Article  Google Scholar 

  • IMD. (2015). Heavy rainfall over southeast India during November & early December 2015. NWP-Chennai rainfall Report, 79.

  • Jamima, P. (2013). Numerical analysis of atmospheric dispersion studies over mega cities. PhD Thesis, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 222. Available at: http://hdl.handle.net/10603/18371. Accessed Dec 2017.

  • Kang, H. Q., Zhu, B., Zhu, T., Sun, J. L., & Ou, J. J. (2014). Impact of megacity Shanghai on the urban heat-island effects over the downstream city Kunshan. Boundary-Layer Meteorology, 152(3), 411–426.

    Article  Google Scholar 

  • Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A., & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology, 30(13), 1908–1916.

    Article  Google Scholar 

  • Krishnamurthy, R., & Desouza, K. C. (2015). Chennai, India. Cities, 42, 118–129.

    Article  Google Scholar 

  • Krpo, A., Salamanca, F., Martilli, A., & Clappier, A. (2010). On the impact of anthropogenic heat fluxes on the urban boundary layer: a two-dimensional numerical study. Boundary-Layer Meteorology, 136(1), 105–127.

    Article  Google Scholar 

  • Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., & Mohanty, U. C. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), 1897–1910.

    Article  Google Scholar 

  • Lei, M., Niyogi, D., Kishtawal, C., Pielke, R. A., Sr., BeltrĂĄn-Przekurat, A., Nobis, T. E., et al. (2008). Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmospheric Chemistry and Physics, 8(20), 5975–5995.

    Article  Google Scholar 

  • Li, X. X., Koh, T. Y., Entekhabi, D., Roth, M., Panda, J., & Norford, L. K. (2013). A multi-resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. Journal of Geophysical Research: Atmospheres, 118, 1–15.

    Google Scholar 

  • Li, X. X., Koh, T. Y., Panda, J., & Norford, L. K. (2016). Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. Journal of Geophysical Research: Atmospheres, 121(9), 4386–4403.

    Google Scholar 

  • Li, X. X., & Norford, L. K. (2016). Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Climate, 16, 59–74.

    Article  Google Scholar 

  • Lin, C. Y., Chen, F., Huang, J. C., Chen, W. C., Liou, Y. A., Chen, W. N., et al. (2008). Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment, 42(22), 5635–5649.

    Article  Google Scholar 

  • Litta, A. J., & Mohanty, U. C. (2008). Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF—NMM model. Current Science, 95(2), 204–215.

    Google Scholar 

  • Liu, X., Li, X. X., Harshan, S., Roth, M., & Velasco, E. (2017). Evaluation of an urban canopy model in a tropical city: The role of tree evapotranspiration. Environmental Research Letters, 12(9), 1–12.

    Article  Google Scholar 

  • Liu, S., & Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21), 5790–5809.

    Article  Google Scholar 

  • Mehta, S. K., Ratnam, M. V., Sunilkumar, S. V., Rao, D. N., & Krishna Murthy, B. V. (2017). Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region. Atmospheric Chemistry and Physics, 17(1), 531–549.

    Article  Google Scholar 

  • Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., & Wang, Y. (2009). An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. Journal of Applied Meteorology and Climatology, 48, 484–500.

    Article  Google Scholar 

  • Miao, S., Chen, F., Li, Q., & Fan, S. (2011). Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. Journal of Applied Meteorology and Climatology, 50, 806–824.

    Article  Google Scholar 

  • Misra, A. K. (2011). Impact of urbanization on the hydrology of Ganga Basin (India). Water Resources Management, 25(2), 705–719.

    Article  Google Scholar 

  • Mohan, M., & Kandya, A. (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506, 453–465.

    Article  Google Scholar 

  • Mohan, M., Kandya, A., & Battiprolu, A. (2011). Urban heat island effect over national capital region of India: a study using the temperature trends. Journal of Environmental Protection, 2(4), 465–472.

    Article  Google Scholar 

  • Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the atmosphere near the ground. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, 24(151), 163–187.

    Google Scholar 

  • Moyer, A. N., & Hawkins, T. W. (2017). River effects on the heat island of a small urban area. Urban Climate, 21, 262–277.

    Article  Google Scholar 

  • Murugavel, P., Pawar, S. D., & Gopalakrishnan, V. (2012). Trends of convective available potential energy over the Indian region and its effect on rainfall. International Journal of Climatology, 32(9), 1362–1372.

    Article  Google Scholar 

  • Mushore, T. D., Mutanga, O., Odindi, J., & Dube, T. (2017). Linking major shifts in land surface temperatures to long term land use and land cover changes: A case of Harare, Zimbabwe. Urban Climate, 20, 120–134.

    Article  Google Scholar 

  • Ooi, M. C. G., Chan, A., Ashfold, M. J., Morris, K. I., Oozeer, M. Y., & Salleh, S. A. (2017). Numerical study on effect of urban heating on local climate during calm inter-monsoon period in greater Kuala Lumpur, Malaysia. Urban Climate, 20, 228–250.

    Article  Google Scholar 

  • Panda, J., & Sharan, M. (2012). Influence of land-surface and turbulent parameterization schemes on regional-scale boundary layer characteristics over northern India. Atmospheric Research, 112, 89–111.

    Article  Google Scholar 

  • Panda, J., Sharan, M., & Gopalakrishnan, S. G. (2009). Study of regional-scale boundary layer characteristics over Northern India with a special reference to the role of the Thar Desert in regional-scale transport. Journal of Applied Meteorology and Climatology, 48(11), 2377–2402.

    Article  Google Scholar 

  • Quah, A. K., & Roth, M. (2012). Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmospheric Environment, 46, 92–103.

    Article  Google Scholar 

  • Ramakrishna, T. V. B. P. S., & Sharan, M. (2007). Simulation of atmospheric boundary layer characteristics during Indian summer monsoon using observations from monsoon trough boundary layer experiment at Jodhpur, India. In: Sharan M., Raman S. (Eds.), Atmospheric and oceanic. Pageoph topical volumes (pp. 1839–1859). Basel: Birkhäuser.

  • Rao, K. G. (2004). Estimation of the exchange coefficient of heat during low wind convective conditions. Boundary-Layer Meteorology, 111(2), 247–273.

    Article  Google Scholar 

  • Rao, P. S. (2005). Arabian Sea monsoon experiment: An overview. Mausam, 56(1), 1–7.

    Google Scholar 

  • Rao, K. G., & Narasimha, R. (2006). Heat-flux scaling for weakly forced turbulent convection in the atmosphere. Journal of Fluid Mechanics, 547, 115–135.

    Article  Google Scholar 

  • Rao, K. G., Narasimha, R., & Prabhu, A. (1996). An analysis of MONTBLEX data on heat and momentum flux at Jodhpur. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 105(3), 309–323.

    Google Scholar 

  • Roth, M. (2000). Review of atmospheric turbulence over cities. Quarterly Journal of the Royal Meteorological Society, 126(564), 941–990.

    Article  Google Scholar 

  • Sarkar, A., & De Ridder, K. (2011). The urban heat island intensity of Paris: A case study based on a simple urban surface parametrization. Boundary-Layer Meteorology, 138(3), 511–520.

    Article  Google Scholar 

  • Satyanarayana, A. N. V., Lykossov, V. N., & Mohanty, U. C. (2000). A study on atmospheric boundary-layer characteristics at Anand, India using LSP experimental data sets. Boundary-Layer Meteorology, 96(3), 393–419.

    Article  Google Scholar 

  • Sekar, S. P., & Kanchanamala, S. (2011). An analysis of growth dynamics in Chennai Metropolitan area. Journal of Institute of Town Planners, India, 8, 31–57.

    Google Scholar 

  • Shanawaz, M. (2007). Study of atmospheric boundary layer characteristics over mega cities in India its influence on weather and pollution. PhD Thesis, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 112. Available at: http://hdl.handle.net/10603/64436. Accessed Dec 2017.

  • Sharan, M., Gopalakrishnan, S. G., McNider, R. T., & Singh, M. P. (2000). Bhopal gas leak: A numerical investigation on the possible influence of urban effects on the prevailing meteorological conditions. Atmospheric Environment, 34, 539–552.

    Article  Google Scholar 

  • Sharan, M., & Krishna, T. R. (2003). On the bulk Richardson number and flux–profile relations in an atmospheric surface layer under weak wind stable conditions. Atmospheric Environment, 37(26), 3681–3691.

    Article  Google Scholar 

  • Sharan, M., Krishna, T. R., & Aditi, (2003). Surface-layer characteristics in the stable boundary layer with strong and weak winds. Boundary-Layer Meteorology, 108(2), 257–288.

    Article  Google Scholar 

  • Sharan, M., Krishna, T. R., & Panda, J. (2005). Relations among stability parameters in the stable surface layer: Golder curves revisited. Atmospheric Environment, 39(30), 5619–5623.

    Article  Google Scholar 

  • Sharan, M., & Srivastava, P. (2016). Characteristics of the heat flux in the unstable atmospheric surface layer. Journal of the Atmospheric Sciences, 73(11), 4519–4529.

    Article  Google Scholar 

  • Shem, W., & Shepherd, M. (2009). On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmospheric Research, 92, 172–189.

    Article  Google Scholar 

  • Shepherd, J. M. (2005). A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions, 9(12), 1–27.

    Article  Google Scholar 

  • Shepherd, J. M., & Burian, S. J. (2003). Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions, 7(4), 1–17.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., et al. (2008). A description of the advanced research WRF version 3 technical note (p. 113). Boulder: National Center for Atmospheric Research.

    Google Scholar 

  • Sparks, N., & Toumi, R. (2015). Numerical simulations of daytime temperature and humidity crossover effects in london. Boundary-Layer Meteorology, 154(1), 101–117.

    Article  Google Scholar 

  • Srivastava, P., & Sharan, M. (2015). Characteristics of the drag coefficient over a tropical environment in convective conditions. Journal of the Atmospheric Sciences, 72(12), 4903–4913.

    Article  Google Scholar 

  • Stull, R. B. (2012). An introduction to boundary layer meteorology (vol. 13). Dordrecht: Springer.

    Google Scholar 

  • Troen, I. B., & Mahrt, L. (1986). A simple model of the atmospheric boundary layer; Sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1–2), 129–148.

    Article  Google Scholar 

  • Tyagi, B., Krishna, V. N., & Satyanarayana, A. N. V. (2011). Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural Hazards, 56(3), 681–698.

    Article  Google Scholar 

  • Tyagi, B., & Satyanarayana, A. N. V. (2013). Assessment of turbulent kinetic energy budget and boundary layer characteristics during pre-monsoon thunderstorm season over Ranchi. Asia-Pacific Journal of Atmospheric Sciences, 49(5), 587–601.

    Article  Google Scholar 

  • Tyagi, B., & Satyanarayana, A. N. V. (2014). Coherent structures contributions in fluxes of momentum and heat at two tropical sites during pre-monsoon thunderstorm season. International Journal of Climatology, 34(5), 1575–1584.

    Article  Google Scholar 

  • Tyagi, B., & Satyanarayana, A. N. V. (2015). Delineation of surface energy exchanges variations during thunderstorm and non-thunderstorm days during pre-monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics, 122, 138–144.

    Article  Google Scholar 

  • Tyagi, B., Satyanarayana, A. N. V., Kumar, M., & Mahanti, N. C. (2012). Surface energy and radiation budget over a tropical station: an observational study. Asia-Pacific Journal of Atmospheric Sciences, 48(4), 411–421.

    Article  Google Scholar 

  • Vernekar, K. G., Sinha, S., Sadani, L. K., Sivaramakrishnan, S., Parasnis, S. S., Mohan, B. S., et al. (2003). An overview of the land surface processes experiment (LASPEX) over a semi-arid region of India. Boundary-Layer Meteorology, 106(3), 561–572.

    Article  Google Scholar 

  • Wang, W., Shen, X., & Huang, W. (2016). A comparison of boundary-layer characteristics simulated using different parametrization schemes. Boundary-Layer Meteorology, 161(2), 375–403.

    Article  Google Scholar 

  • Yow, D. M. (2007). Urban heat islands: Observations, impacts and adaptation. Geography Compass, 01(06), 1227–1251.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the IMD (http://www.imd.gov.in), ECMWF (http://apps.ecmwf.int/datasets), NCAR-UCAR (http://rda.ucar.edu) and University of Wyoming weather website (http://weather.uwyo.edu) for providing the necessary data sets to carry out the research work. We would also like to thank Mr. Bijay Kumar Guha of NIT, Rourkela, for his technical help and Mr. Falguni Muduli for helping in data collection. The authors are thankful to the anonymous reviewers for their valuable feedback, which helped in the overall improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagabandhu Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, S.S., Panda, J. A Study of Near-Surface Boundary Layer Characteristics During the 2015 Chennai Flood in the Context of Urban-Induced Land Use Changes. Pure Appl. Geophys. 176, 2607–2629 (2019). https://doi.org/10.1007/s00024-018-2069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2069-5

Keywords

Navigation