Skip to main content
Log in

Assessment of turbulent kinetic energy budget and boundary layer characteristics during pre-monsoon thunderstorm season over Ranchi

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In the present work turbulent kinetic energy (TKE) budget and boundary layer characteristics are studied for an Indian tropical station Ranchi (23°25N, 85°26E), situated over Chota Nagpur plateau. The pre-monsoon months (March-May) data for years 2008–2010 has been used in the present study which is the period of severe thunderstorm over the North East India. TKE budget terms, dissipation rates, and normalized standard deviations of wind and temperature along with skewness of temperature have been analyzed to find out characteristic difference between days of thunderstorm and days of clear weather. Present study brought out significant variations in the turbulence transportation between the days of thunderstorm activity to that of fair weather days. Site and season specific relationships normalized standard deviations of wind and temperature with atmospheric stability during pre-monsoon thunderstorm and non thunderstorm days over Ranchi are proposed. One of the important outcomes of the study is proposing site specific relationships between TKE dissipation rates with respect to atmospheric stability. These results are useful in validating the mesoscale simulations of thunderstorm activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson J. D., M. B. Parlange, G. Kiely, and W. E. Eichinger, 1997: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. J. Geophys. Res., 102, 13423–13432, doi:10.1029/96JD03346.

    Article  Google Scholar 

  • Andreas E. L., and Coauthors, 2006: Evaluation of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117–149.

    Article  Google Scholar 

  • _____, R. J. Hill, J. R. Gose, D. I. Moore, W. D. Otto, and A. D. Sarma, 1998: Statistics of surface layer turbulence over terrain with metre-scale heterogeneity. Bound.-Layer Meteor., 86, 379–408.

    Article  Google Scholar 

  • Antonia R. A., S. Rajagopalan, and A. J. Chambers, 1983: Conditional sampling of turbulence in the atmospheric surface layer. J. Appl. Meteor. Climatol., 22, 69–78.

    Article  Google Scholar 

  • Bian L., X. Xu, L. Lu, Z. Gao, M. Zhou, and H. Liu, 2003: Analysis of turbulence parameters in the Near-Surface Layer at Qamdo of the Southeastern Tibetan Pleateau. Adv. Atmos. Sci., 20(3), 369–378.

    Article  Google Scholar 

  • Bister M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233–240.

    Article  Google Scholar 

  • Bowen B. M., 1995: Example of reduced turbulence during thunderstorm outflow. J. Appl. Meteorol., 35, 1028–1032.

    Article  Google Scholar 

  • Businger J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Businger S., and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58, 3793–3796.

    Article  Google Scholar 

  • Dharamaraj T., G. R. Chintalu, and P. E. Raj, 2009: Turbulence characteristics in the atmospheric surface layer during summer monsoon of 1997 over a semi-arid location in India. Meteor. Atmos. Phys., 104, 113–123.

    Article  Google Scholar 

  • Droegemeier K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.

    Article  Google Scholar 

  • Dyer A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363–372.

    Article  Google Scholar 

  • Edson J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 2311–2328.

    Article  Google Scholar 

  • Filho E. P. M., L. D. A. Sa’, H. A. Karam, R. C. S. Alvala’, A. Souza, and M. M. R. Pereira, 2008: Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agric. Forest Meteor., 148, 883–892

    Article  Google Scholar 

  • Foken T., 2006: 50 Years of the Monin-Obukhov similarity theory. Bound.-Layer Meteor., 119, 431–447.

    Article  Google Scholar 

  • _____, and B. Wichra, 1996: Tools for quality assessment of surface-based flux measurements. Agric. Forest Meteor., 78, 83–105.

    Article  Google Scholar 

  • Frech M., 2007: Estimating the turbulent energy dissipation rate in an airport environment. Bound.-Layer Meteor., 123, 385–393.

    Article  Google Scholar 

  • Frenzen P., and C. A. Vogel, 1992: The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Bound.-Layer Meteor., 60, 49–76.

    Article  Google Scholar 

  • _____, and ______, 2001: Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Bound.-Layer Meteor., 99, 173–206.

    Article  Google Scholar 

  • Gupta S., and V. T. Gajbhiye, 2002: Effect of concentration, moisture, and soil type on the dissipation of flufenacet from soil. Chemosphere, 47, 901–906.

    Article  Google Scholar 

  • Ha K. J., Y. K. Hyun, H. M. Oh, K. E. Kim, and L. Mahrt, 2012: Evaluation of boundary layer similarity theory for stable conditions in CASES-99. Mon. Wea. Rev., 135, 3474–3483, doi: 10.1175/MWR3488.1.

    Article  Google Scholar 

  • Han J. G., S. P. Arya, S. Shan, and Y. L. Lin, 2000: An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory, a report submitted to national aeronautics and space administration langley research center prepared for langley research center hampton, Virginia 23681-2199 NASA/CR-2000-210298, 25 pp.

    Google Scholar 

  • Hartogensis O. K., and H. A. R. DeBruin, 2005: Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Bound.-Layer Meteor., 116, 253–276.

    Article  Google Scholar 

  • Hegde A. K., R. Venkateshan, C. V. Srinivas, and K. M. Balakrishna, 2010: Estimation of atmospheric surface layer parameters and numerical simulation using MM5 at Mangalore, West Coast of India. Meteor. Atmos. Phys., 107, 161–172

    Article  Google Scholar 

  • Hicks B. B., 1976: Wind profile relationships from the ‘Wangara’ experiment. Quart. J. Roy. Meteor. Soc., 102, 535–551.

    Google Scholar 

  • Högström U., 1990: Analysis of turbulence structures in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47, 1949–1972.

    Article  Google Scholar 

  • _____, 1992: Further evidence of ‘inactive’ turbulence in the near neutral atmospheric surface layer. In: 10th symp. on turbul. and diffusion, Portland, OR, Ameran Meteorology Society, Boston, MA, 188-191 pp.

    Google Scholar 

  • _____, 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215–246.

    Article  Google Scholar 

  • _____, and H. Bergstrom, 1996: Organized turbulence structures in the near-neutral atmospheric surface layer. J. Atmos. Sci., 53, 2452–2464.

    Article  Google Scholar 

  • Holzäpfel F, and R. E. Robins, 2004: Probabilistic two-phase aircraft wake-vortex model: application and assessment. Journal of Aircraft, 41, 1117–1126.

    Article  Google Scholar 

  • Howell J. F., and J. Sun, 1999: Surface layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495–520.

    Article  Google Scholar 

  • Kader B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637–662.

    Article  Google Scholar 

  • Kaimal J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–589.

    Article  Google Scholar 

  • _____, and J. J. Finnigan, 1994: Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kolmogorov A. N., 1941: Energy dissipation in locally isotropic turbulence. Doklady AN SSSR, 32, 19–20.

    Google Scholar 

  • Krishnan P., and P. K. Kunhikrishnan, 2002: Some characteristics of atmospheric surface layer over a tropical inland region during southwest monsoon period. Atmos. Res., 62, 111–124.

    Article  Google Scholar 

  • Li M., Y. Ma, W. Ma, Z. Hu, H. Ishikawa, Su Zhongbo, and F. Sun, 2006: Analysis of turbulence characteristics over the northern Tibetan plateau area. Adv. Atmos. Sci., 23(4), 579–585.

    Article  Google Scholar 

  • Li X., N. Zimmerman, and M. Princevac, 2008: Local Imbalance of Turbulent Kinetic Energy in the Surface Layer. Bound.-Layer Meteor., 129, 115–136.

    Article  Google Scholar 

  • McBean G. A., 1971: The variations of the statistics of wind, temperature and humidity fluctuations with stability. Bound.-Layer Meteor., 1, 438–457.

    Article  Google Scholar 

  • _____, and J. A. Elliott, 1975: The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J. Atmos. Sci., 32, 753–766.

    Article  Google Scholar 

  • _____, and M. Miyake, 1972: Turbulent transfer mechanism in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 98, 383–398.

    Article  Google Scholar 

  • Moncrieff J., R. Clement, J. Finnigan, and T. Meyers, 1998: Averaging, detrending, and filtering of eddy covariance time series. In: Lee X, Massman W, Law B. (eds.) Handbook of Micrometeorology, Kluwer Academic Publishers, 7–31.

    Google Scholar 

  • Ohtaki E., 1985: On the similarity in atmospheric fluctuations of carbon dioxide, water vapour and temperature over vegetated fields. Bound.-Layer Meteor, 32, 25–37.

    Article  Google Scholar 

  • Pahlow M, M. B. Parlange, and F. Porté-Agel, 2001: On the Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225–248.

    Article  Google Scholar 

  • Panofsky H. A., D. H. Tennekes, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355–361.

    Article  Google Scholar 

  • Pino D., J. Vilà-guerau de arellano, and P. G. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60, 1913–1926.

    Article  Google Scholar 

  • Rodriguez C. A. M., Rosmeri P. da Rocha, and R. Bombardi, 2010: On the development of summer thunderstorms in the city of Sao Paulo: Mean meteorological characteristics and pollution effect. Atmos. Res., 96, 477–488.

    Article  Google Scholar 

  • Ramana M. V., P. Krishnan, and P. K. Kunhikrishnan, 2004: Surface boundary layer characteristics over a tropical inland station: seasonal features. Bound.-Layer Meteor., 111, 153–175.

    Article  Google Scholar 

  • Rannik U., and T. Vesala, 1999: Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Bound.-Layer Meteor., 91, 259–280.

    Article  Google Scholar 

  • Roth M., 1993: turbulence transfer relationships over an urban surface II: Integral statistics. Quart. J. Roy. Meteor. Soc., 19, 1105–1120.

    Article  Google Scholar 

  • _____, J. A. Salmond, and A. N. V. Satyanarayana, 2006: Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: The role of scintillometery. Bound.-Layer Meteor., 121, 351–375.

    Article  Google Scholar 

  • Singha A., and R. Sadr, 2012: Characteristics of surface layer turbulence in coastal area of Qatar. Environ. Fluid Mech., doi:10.1007/s10652-012-9242-7.

    Google Scholar 

  • Sivaramakrishnan S., S. Sangeeta, and K. G. Vernekar, 1992: Characteristics of turbulent fluxes of sensible heat and momentum in the surface boundary layer during the Indian summer monsoon. Bound.-Layer Meteor., 60, 95–108.

    Article  Google Scholar 

  • Srivastava M. K., and P. Parth Sarthi, 2002: Turbulent kinetic energy in the atmospheric surface layer during the summer monsoon. Meteor. Appl., 9, 239–246.

    Article  Google Scholar 

  • STORM Science Plan, 2005: Severe Thunderstorms-Observations and Regional Modeling (STORM) Programme, Science Plan, Dept. of Science and Technology, Govt. of India, 118 pp.

    Google Scholar 

  • Stull R. B., 1988: An introduction to boundary layer meteorology. Kluwer Academic Publishers, 670 pp.

    Book  Google Scholar 

  • Thiermann V., and H. Grassl, 1992: The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58, 367–389.

    Article  Google Scholar 

  • Thomas C., and T. Foken, 2007: Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound.-Layer Meteor., 123, 317–337.

    Article  Google Scholar 

  • Tillman A. S., 1972: The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol., 11, 783–792.

    Article  Google Scholar 

  • Trinh K. T., 2012: On the Karman constant. In the Archives of arXiv.org, Cornell University. http://arxiv.org/ftp/arxiv/papers/1007/1007.0605.pdf

    Google Scholar 

  • Tyagi B., A. N. V. Satyanarayana, M. Kumar, and N. C. Mahanti, 2012: Surface energy and radiation budget over a tropical station: An observational study. Asia-Pacific J. Atmos. Sci., 48(4), 411–421, DOI: 10.1007/s13143-012-0037-z.

    Article  Google Scholar 

  • Vickers D., and L. Mahrt, 1996: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512–526.

    Article  Google Scholar 

  • _____, and ______, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20, 660–672.

    Article  Google Scholar 

  • Viswanathan D. V., A. N. V. Satyanarayna, S. Mishra, and P. Partha Sarthi, 1997a: Turbulent kinetic energy budget parameter over Varanasi from MONTBLEX-90. Proc. Indian Natl. Sci. Acad., 63A, 403–412.

    Google Scholar 

  • _____, ______, M. K. Srivastava, and S. Mishra, 1997b: Surface layer turbulent kinetic energy budget over Kharagpur. J. Scientific Res., 47, 11–20. ISSN: 0447-9483.

    Google Scholar 

  • Weinbeck S. W., 1997: Surface layer characteristics of thunderstorm outflow, a thesis in atmospheric science. Master of Science Thesis Submitted to the Graduate Faculty of Texas Tech University, 107 pp.

    Google Scholar 

  • Wilcjack J. M., 1984: Large-scale eddies in the unstably stratified atmospheric surface layer, Part I: Velocity and temperature structure. J. Atmos. Sci., 41 (24), 3537–3550.

    Google Scholar 

  • _____, S. P. Oncley, and S. A. Stage, 2001: Sonic anemometers tilt corrections algorithms. Bound.-Layer Meteor., 99, 127–150.

    Article  Google Scholar 

  • Wyngaard J. C., and O. R. Cote, 1971: The budget of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 199–201.

    Google Scholar 

  • Yadav A. K., S. Raman, and M. Sharan, 1996: Surface turbulence spectra and dissipation rates during low wind in tropics. Bound.-Layer Meteor., 79, 205–223.

    Article  Google Scholar 

  • Yahaya S., J. P. Frangi, and D. C. Richard, 2003: Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers — effects of soil tillage treatment (Northern Spain). Ann. Geophys., 21, 2119–2131.

    Article  Google Scholar 

  • Zhang H, and S. Park, 1999: Dissipation rates of turbulent kinetic energy and temperature and humidity variances over different surfaces. Atmos. Res., 50, 37–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. V. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, B., Satyanarayana, A.N.V. Assessment of turbulent kinetic energy budget and boundary layer characteristics during pre-monsoon thunderstorm season over Ranchi. Asia-Pacific J Atmos Sci 49, 587–601 (2013). https://doi.org/10.1007/s13143-013-0052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0052-8

Key words

Navigation