Skip to main content
Log in

The Urban Heat Island Intensity of Paris: A Case Study Based on a Simple Urban Surface Parametrization

  • Research Note
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We explore the ability of a simple urban surface parametrization, embedded in a mesoscale meteorological model, to correctly reproduce observed values of the urban heat island (UHI) intensity, which is defined as the urban-rural surface air temperature difference. To do so, a simple urban scheme was incorporated into the Advanced Regional Prediction System (ARPS). Subsequently, a simulation was performed with the coupled model over the wider area of Paris, for a 12-day period in June 2006 that was characterised by conditions prone to UHI development. Simulated 2-m air temperature was compared with observed values for urban and rural stations, yielding mean errors of 1.4 and 1.5 K, respectively. More importantly, it was found that the model also displayed an overall good capability of reproducing the observed temperature differences. In particular, the magnitude (up to 6 K) and timing of the diurnal cycle of the UHI intensity was simulated well, the model exhibiting a mean error of 1.15 K. As a result, our conclusion is that the ARPS model, extended with simple urban surface physics, is able to capture observed urban-rural air temperature differences well, at least for the domain and period studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, New York, p 420

    Google Scholar 

  • Atkinson BW (2003) Numerical modelling of urban heat island intensity. Boundary-Layer Meteorol 109: 285–310

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. D. Reidel, Dordrecht, p 229

    Google Scholar 

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14: 601–604

    Article  Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20: 682–690

    Article  Google Scholar 

  • Davies F, Middleton DR, Bozier KE (2007) Urban air pollution and measurements of boundary layer height. Atmos Environ 41: 4040–4049

    Article  Google Scholar 

  • De Ridder K (2006) Testing Brutsaert’s temperature roughness parameterization for representing urban surfaces in atmospheric models. Geophys Res Lett 33: L13403. doi:10.1029/2006GL026572

    Article  Google Scholar 

  • De Ridder K (2010) Bulk transfer relations for the roughness sublayer. Boundary-Layer Meteorol 134: 257–267

    Article  Google Scholar 

  • De Ridder K, Schayes G (1997) The IAGL land surface model. J Appl Meteorol 36: 167–182

    Article  Google Scholar 

  • Demuzere M, De Ridder K, van Lipzig N (2008) Modelling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. J Geophys Res 113. doi:10.1029/2007JD009113

  • Dettwiller J, Changnon SA (1976) Posisble urban effects on maximum daily rainfall at Paris, St. Louis, and Chicago. J Appl Meteorol 15: 517–519

    Article  Google Scholar 

  • European Commission (1994) CORINE land cover technical guide, EUR 12585 EN, OPOCE, European Commission Publications, Luxembourg, 35 pp

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, p 316

    Google Scholar 

  • Gutman G, Ignatov A (1998) Derivation of green vegetation fraction from NOAA/AVHRR for use in weather prediction models. Int J Remote Sens 19: 1533–1543

    Article  Google Scholar 

  • Houghton, JT, Ding, Y, Griggs, DJ, Noguer, M, Linden, PJ, Dai, X, Maskell, K, Johnson, C (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • Kanda K, Kanega M, Kawai T, Moriwaki R, Sugawara H (2007) Roughness lengths for momentum and heat derived from outdoor urban scale models. J Appl Meteorol Climatol 46: 1067–1079

    Article  Google Scholar 

  • Kawai T, Ridwan MK, Kanda M (2009) Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. J Appl Meteorol Climatol 48: 693–715

    Article  Google Scholar 

  • Lai LW, Cheng WL (2010) Urban heat island and air pollution—an emerging role for hospital respiratory admissions in an urban area. J Environ Health 72: 32–35

    Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic Press, New York, p 275

    Google Scholar 

  • Makar A, Gravel S, Chirkov V, Strawbridge KB, Froude F, Arnold J, Brook J (2006) Heat flux, urban properties, and regional weather. Atmos Environ 40: 2750–2766

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorol 104: 261–304

    Article  Google Scholar 

  • Masson V (2000) A physically-based scheme for the urban energy balance in atmospheric models. Boundary-Layer Meteorol 94: 357–397

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London, p 435

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–861

    Article  Google Scholar 

  • Pielke RA Sr (2002) Mesoscale meteorological modeling, 2nd edn. Academic Press, San Diego, p 676

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, UK, p 934

    Google Scholar 

  • Ridders CJF (1979) A new algorithm for computing a single root of a real continuous function. IEEE Trans Circuits Syst 26: 979–980

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global Land Data Assimilation System. Bull Am Meteor Soc 85: 381–394

    Article  Google Scholar 

  • Sarrat C, Lemonsu A, Masson V, Guedalia D (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40: 1743–1758

    Article  Google Scholar 

  • Short CA, Cook MJ, Woods A (2009) Low energy ventilation and cooling within an urban heat island. Renew Energy 34: 2022–2029

    Article  Google Scholar 

  • Sugawara H, Narita K (2008) Roughness length for heat over an urban canopy. Theor Appl Climatol 95: 291–299

    Article  Google Scholar 

  • Sun WY, Chang CZ (1986) Diffusion model for a convective layer. Part I: numerical simulation of convective layer. J Clim Appl Meteorol 25: 1445–1453

    Article  Google Scholar 

  • Taha H (1997) Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energy Build 25: 169–177

    Article  Google Scholar 

  • Taha H (2008) Urban surface modification as a potential ozone air-quality improvement strategy in California: a mesoscale modelling study. Boundary-Layer Meteorol 127: 219–239

    Article  Google Scholar 

  • Takebayashi H, Moriyama M (2009) Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy 83: 1211–1223

    Article  Google Scholar 

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54: 75–84

    Article  Google Scholar 

  • Van Weverberg K, De Ridder K, Van Rompaey A (2008) Modeling the contribution of the Brussels heat island to a long temperature time series. J Clim Appl Meteorol 47: 976–990

    Article  Google Scholar 

  • Vardoulakis S, Gonzalez-Flesca N, Fisher BEA, Pericleous K (2005) Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos Environ 39: 2725–2736

    Article  Google Scholar 

  • Voogt JA, Grimmond CJB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteor 39: 1679–1699

    Article  Google Scholar 

  • Wittich K-P, Hansing O (1995) Area-averaged vegetative cover fraction estimated from satellite data. Int J Biometeorol 38: 209–215

    Article  Google Scholar 

  • Xu W, Wooster MJ, Grimmond CSB (2008) Modelling of urban sensible heat flux at multiple spatial scales: a demonstration using airborne hyperspectral imagery of Shanghai and a temperature-emissivity separation approach. Remote Sens Environ 112: 3493–3510

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The Advanced Regional Prediction System (ARPS)-a multi-scale nonhydrostatic atmospheric simulation and prediction model: part I. Model dynamics and verification. Meteorol Atmos Phys 75: 161–193

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D (2001) The Advanced Regional Prediction System (ARPS)-a multi-scale nonhydrostatic atmospheric simulation and prediction model: part II. Model physics and applications. Meteorol Atmos Phys 76: 143–165

    Article  Google Scholar 

  • Zilitinkevich SS (1970) Dynamics of the atmospheric boundary layer. Leningrad Gidrometeor, Leningrad, p 291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., De Ridder, K. The Urban Heat Island Intensity of Paris: A Case Study Based on a Simple Urban Surface Parametrization. Boundary-Layer Meteorol 138, 511–520 (2011). https://doi.org/10.1007/s10546-010-9568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9568-y

Keywords

Navigation