Skip to main content

Advertisement

Log in

Inhibition of protein misfolding and aggregation by natural phenolic compounds

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer’s and Parkinson’s diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22:482–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  PubMed  CAS  Google Scholar 

  3. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36

    Article  PubMed  CAS  Google Scholar 

  4. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  PubMed  CAS  Google Scholar 

  5. Hetz C, Soto C (2003) Protein misfolding and disease: the case of prion disorders. Cell Mol Life Sci 60:133–143

    Article  PubMed  CAS  Google Scholar 

  6. Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  PubMed  CAS  Google Scholar 

  8. Westermark GT, Fändrich M, Westermark P (2015) AA amyloidosis: pathogenesis and targeted therapy. Annu Rev Pathol Mech Dis 10:321–344

    Article  CAS  Google Scholar 

  9. Mukherjee A, Morales-Scheihing D, Butler PC, Soto C (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol Med 21:439–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sekijima Y (2015) Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 86:1036–1043

    Article  PubMed  Google Scholar 

  11. Morales R, Moreno-Gonzalez I, Soto C (2013) Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003537

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta Mol Basis Dis 1739:5–25

    Article  CAS  Google Scholar 

  14. Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8:737–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  16. Duran-Aniotz C, Moreno-Gonzalez I, Morales R (2013) Amyloid aggregates: role in protein misfolding disorders. Rev Med Chile 141:495–505

    Article  PubMed  CAS  Google Scholar 

  17. Andre R, Tabrizi SJ (2012) Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 6:32–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181:1426–1435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cuanalo-Contreras K, Mukherjee A, Soto C (2013) Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int J Cell Biol 2013:638083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–599

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123:53–70

    Article  PubMed  Google Scholar 

  23. Kelly JW (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 6:11–17

    Article  PubMed  CAS  Google Scholar 

  24. Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155

    Article  PubMed  CAS  Google Scholar 

  25. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  PubMed  CAS  Google Scholar 

  26. Moreno-Gonzalez I, Edwards G III, Salvadores N, Shahnawaz M, Diaz-Espinoza R, Soto C (2017) Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol Psychiatry 22:1327–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morales R, Estrada LD, Diaz-Espinoza R, Morales-Scheihing D, Jara MC, Castilla J, Soto C (2010) Molecular cross talk between misfolded proteins in animal models of Alzheimer’s and prion diseases. J Neurosci. 30:4528–4535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498:204–207

    Article  PubMed  CAS  Google Scholar 

  29. Estrada LD, Soto C (2006) Inhibition of protein misfolding and aggregation by small rationally-designed peptides. Curr Pharm Des 12:2557–2567

    Article  PubMed  CAS  Google Scholar 

  30. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826

    Article  PubMed  CAS  Google Scholar 

  31. Ladiwala ARA, Dordick JS, Tessier PM (2011) Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways. J Biol Chem 286:3209–3218

    Article  PubMed  CAS  Google Scholar 

  32. Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, Tabrizi SJ (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2:281. https://doi.org/10.1038/ncomms1282

    Article  PubMed  CAS  Google Scholar 

  33. Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5:e1000426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sarnataro D, Pepe A, Altamura G, De Simone I, Pesapane A, Nitsch L, Montuori N, Lavecchia A, Zurzolo C (2016) The 37/67 kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67 kDa LR cell surface localization and interaction with the cellular prion protein. Sci Rep 6:24457. https://doi.org/10.1038/srep24457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Valera E, Masliah E (2013) Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther. 138:311–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wisniewski T, Goñi F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pedersen JT, Sigurdsson EM (2015) Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21:394–402

    Article  PubMed  CAS  Google Scholar 

  38. Rosenblum WI (2014) Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 35:969–974

    Article  PubMed  CAS  Google Scholar 

  39. Van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 83:311–319

    Article  PubMed  CAS  Google Scholar 

  40. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  PubMed  CAS  Google Scholar 

  42. D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Crozier A, Del Rio D, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med 31:446–467

    Article  CAS  Google Scholar 

  44. Maruszak A, Pilarski A, Murphy T, Branch N, Thuret S (2014) Hippocampal neurogenesis in Alzheimer’s disease: is there a role for dietary modulation? J Alzheimer’s Dis 38:11–38

    Article  CAS  Google Scholar 

  45. Dias GP, Cavegn N, Nix A, Do Nascimento Bevilaqua MC, Stangl D, Zainuddin MSA, Nardi AE, Gardino PF, Thuret S (2012) The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid Med Cell Longev 2012:541971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhao L, Hou L, Sun H, Yan X, Sun X, Li J, Bian Y, Chu Y, Liu Q (2011) Apigenin isolated from the medicinal plant Elsholtzia rugulosa prevents β-Amyloid 25–35-induces toxicity in rat cerebral microvascular endothelial cells. Molecules 16:4005–4019

    Article  CAS  PubMed Central  Google Scholar 

  47. Florio P, Folli C, Cianci M, Del Rio D, Zanotti G, Berni R (2015) Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites. J Biol Chem 290:29769–29780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Amini R, Yazdanparast R, Bahramikia S (2013) Apigenin reduces human insulin fibrillation in vitro andprotects SK-N-Mc cellsagainstinsulinamyloids. Int J Biol Macromol 60:334–340

    Article  PubMed  CAS  Google Scholar 

  49. Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid beta toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry. 50:2445–2455

    Article  PubMed  CAS  Google Scholar 

  50. Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585:1113–1120

    Article  PubMed  CAS  Google Scholar 

  51. Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324

    Article  PubMed  CAS  Google Scholar 

  52. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18:9949–9965

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. De la Luz Cádiz-Gurrea M, Fernández-Arroyo S, Segura-Carretero A (2014) Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC–ESI-QTOF-MS. Int J Mol Sci 15:20382–20402

    Article  PubMed  CAS  Google Scholar 

  54. Betts JW, Sharili AS, Phee LM, Wareham DW (2015) In vitro activity of epigallocatechin gallate and quercetin alone and in combination versus clinical isolates of methicillin-resistant Staphylococcus aureus [J]. J Nat Prod 78:2145–2148

    Article  PubMed  CAS  Google Scholar 

  55. BituPinto N, DaSilvaAlexandre B, Neves KRT, Silva AH, Leal LKAM, Viana GSB (2015) Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evid Based Complement Altern Med. https://doi.org/10.1155/2015/161092

    Article  Google Scholar 

  56. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci 107:7710–7715

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  PubMed  CAS  Google Scholar 

  58. Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J (2015) The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 589:77–83

    Article  PubMed  CAS  Google Scholar 

  59. Cao P, Raleigh DP (2012) Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 51:2670–2683

    Article  PubMed  CAS  Google Scholar 

  60. Ferreira N, Saraiva MJ, Almeida MR (2012) Natural polyphenols as modulators of TTR amyloidogenesis: in vitro and in vivo evidences towards therapy. Amyloid 19(Suppl 1):39–42

    Article  PubMed  CAS  Google Scholar 

  61. Ferreira N, Saraiva MJ, Almeida MR (2011) Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett 585:2424–2430

    Article  PubMed  CAS  Google Scholar 

  62. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751

    Article  PubMed  CAS  Google Scholar 

  63. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Franko A, Rodriguez Camargo DC, Böddrich A, Garg D, Rodriguez Camargo A, Rathkolb B, Janik D, Aichler M, Feuchtinger A, Neff F, Fuchs H, Wanker EE, Reif B, Häring HU, Peter A, Hrabě De Angelis M (2018) Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice. Sci Rep 8:1116. https://doi.org/10.1038/s41598-017-18807-8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA (2010) Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol 99:483–490

    Article  PubMed  CAS  Google Scholar 

  66. Kim H, Park BS, Lee KG, Cheol YC, Sung SJ, Kim YH, Lee SE (2005) Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 53:8537–8541

    Article  PubMed  CAS  Google Scholar 

  67. Akaishi T, Morimoto T, Shibao M, Watanabe S, Sakai-Kato K, Utsunomiya-Tate N, Abe K (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett 444:280–285

    Article  PubMed  CAS  Google Scholar 

  68. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54:2269–2285

    Article  PubMed  CAS  Google Scholar 

  69. Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Lawrence Marsh J (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 20:261–270

    Article  PubMed  CAS  Google Scholar 

  70. Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, Quehenberger O, Maher P (2014) Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell 13:379–390

    Article  PubMed  CAS  Google Scholar 

  71. Bhat WF, Bhat SA, Bano B (2015) Evaluation of polyphenols as possible therapeutics for amyloidoses: comparative analysis of Kaempferol and Catechin. Int J Biol Macromol 81:60–68

    Article  PubMed  CAS  Google Scholar 

  72. Roth A, Schaffner W, Hertel C (1999) Phytoestrogen kaempferol (3,4′,5,7-tetrahydroxyflavone) protects PC12 and T47D cells from β-amyloid–induced toxicity. J Neurosci Res 57:399–404

    Article  PubMed  CAS  Google Scholar 

  73. Kim JK, Shin E-C, Kim CR, Park GG, Choi SJ, Park S-G, Shin D-H (2013) Effects of brussels sprouts and their phytochemical components on oxidative stress-induced neuronal damages in PC12 cells and ICR mice. J Med Food 16:1057–1061

    Article  PubMed  CAS  Google Scholar 

  74. Kim JK, Choi SJ, Cho HY, Hwang H-J, Kim YJ, Lim ST, Kim C-J, Kim HK, Peterson S, Shin D-H (2010) Protective effects of kaempferol (3,4’,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem 74:397–401

    Article  PubMed  CAS  Google Scholar 

  75. Beg T, Jyoti S, Naz F, Rahul X, Ali F, Ali SK, Reyad AM, Siddique YH (2018) Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527317666180508123050

    Article  PubMed  Google Scholar 

  76. Yang S, Liu W, Lu S, Tian YZ, Wang WY, Ling TJ, Liu RT (2016) A novel multifunctional compound Camellikaempferoside B decreases Aβ production, interferes with Aβ aggregation, and prohibits Aβ-mediated neurotoxicity and neuroinflammation. ACS Chem Neurosci 7:505–518

    Article  PubMed  CAS  Google Scholar 

  77. Ren R, Shi C, Cao J, Sun Y, Zhao X, Guo Y, Wang C, Lei H, Jiang H, Ablat N, Xu J, Li W, Ma Y, Qi X, Ye M, Pu X, Han H (2016) Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson’s disease. Sci Rep 6:22135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lemkul JA, Bevan DR (2012) Morin inhibits the early stages of amyloid β-peptide aggregation by altering tertiary and quaternary interactions to produce “off-pathway” structures. Biochemistry 51:5990–6009

    Article  PubMed  CAS  Google Scholar 

  79. Noor H, Cao P, Raleigh DP (2012) Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Sci 21:373–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Patel P, Parmar K, Das M (2018) Inhibition of insulin amyloid fibrillation by morin hydrate. Int J Biol Macromol 108:225–239

    Article  PubMed  CAS  Google Scholar 

  81. Du Y, Qu J, Zhang W, Bai M, Zhou Q, Zhang Z, Li Z, Miao J (2016) Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. Neuropharmacology 108:1–13

    Article  PubMed  CAS  Google Scholar 

  82. Das S, Stark L, Musgrave IF, Pukala T, Smid SD (2016) Bioactive polyphenol interactions with β amyloid: a comparison of binding modelling, effects on fibril and aggregate formation and neuroprotective capacity. Food Funct 7:1138–1146

    Article  PubMed  CAS  Google Scholar 

  83. Taniguchi S, Suzuki N, Masuda M, Hisanaga SI, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280:7614–7623

    Article  PubMed  CAS  Google Scholar 

  84. Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M (2015) Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 134:943–955

    Article  PubMed  CAS  Google Scholar 

  85. Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:105–115

    Article  PubMed  CAS  Google Scholar 

  86. Zelus C, Fox A, Calciano A, Faridian BS, Nogaj LA, Moffet DA (2012) Myricetin inhibits islet amyloid polypeptide (IAPP) aggregation and rescues living mammalian cells from IAPP toxicity. Open Biochem J 6:66–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. He J, Wang Y, Chang AK, Xu L, Wang N, Chong X, Li H, Zhang B, Jones GW, Song Y (2014) Myricetin prevents fibrillogenesis of hen egg white lysozyme. J Agric Food Chem 62:9442–9449

    Article  PubMed  CAS  Google Scholar 

  88. Matsuzaki K, Noguch T, Wakabayashi M, Ikeda K, Okada T, Ohashi Y, Hoshino M, Naiki H (2007) Inhibitors of amyloid β-protein aggregation mediated by GM1-containing raft-like membranes. Biochim Biophys Acta 1768:122–130

    Article  PubMed  CAS  Google Scholar 

  89. Zhu M, Han S, Fink AL (2013) Oxidized quercetin inhibits α-synuclein fibrillization. Biochim Biophys Acta 1830:2872–2881

    Article  PubMed  CAS  Google Scholar 

  90. Jiang W, Luo T, Li S, Zhou Y, Shen XY, He F, Xu J, Wang HQ (2016) Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS One 11:e0152371. https://doi.org/10.1371/journal.pone.0152371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, Zhang T (2015) Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm Sin B 5:47–54

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145

    Article  PubMed  CAS  Google Scholar 

  93. Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, Lobo J, Cooper B, Wu QL, Talcott ST, Percival SS, Simon JE, Pasinetti GM (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27:769–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, Ito M, Miyamoto KI, Tsuji A, Kawai Y, Terao J (2011) Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 51:1329–1336

    Article  PubMed  CAS  Google Scholar 

  95. Du WJ, Guo JJ, Gao MT, Hu SQ, Dong XY, Han YF, Liu FF, Jiang S, Sun Y (2015) Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci Rep 5:7992. https://doi.org/10.1038/srep07992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Deng Z, Wang X, Zhao H, Cui S, Yao Q, Bai H (2013) A validated LC-MS/MS method for rapid determination of brazilin in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 27:802–806

    Article  PubMed  CAS  Google Scholar 

  97. Yan-Yan J, Yan L, Ying S, Jinyi Z, Fang D, Yuan S, Ai-Dong WJ (2014) A simple high-performance liquid chromatographic method for the determination of brazilin and its application to a pharmacokinetic study in rats. J Ethnopharmacol 151:108–113

    Article  PubMed  CAS  Google Scholar 

  98. Jia Y, Wang H, Song Y, Liu K, Dou F, Lu C, Ge J, Chi N, Ding Y, Hai W, Wen A (2013) Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion studies of Brazilin in rats. J Chromatogr B Analyt Technol Biomed Life Sci 931:61–67

    Article  PubMed  CAS  Google Scholar 

  99. Li M, Dong X, Liu Y, Sun Y (2017) Brazilin inhibits prostatic acidic phosphatase fibrillogenesis and decreases its cytotoxicity. Chem Asian J 12:1062–1068

    Article  PubMed  CAS  Google Scholar 

  100. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  PubMed  CAS  Google Scholar 

  101. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z (2015) Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20:9183–9213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Lin C-F, Yu K-H, Jheng C-P, Chung R, Lee C-I (2013) Curcumin reduces amyloid fibrillation of prion protein and decreases reactive oxidative stress. Pathogens 2:506–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Spinelli KJ, Osterberg VR, Meshul CK, Soumyanath A, Unni VK (2015) Curcumin treatment improves motor behavior in α-synuclein transgenic mice. PLoS One 10:e0128510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yanagisawa D, Shirai N, Amatsubo T, Taguchi H, Hirao K, Urushitani M, Morikawa S, Inubushi T, Kato M, Kato F, Morino K, Kimura H, Nakano I, Yoshida C, Okada T, Sano M, Wada Y, Wada K, Yamamoto A, Tooyama I (2010) Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials 31:4179–4185

    Article  PubMed  CAS  Google Scholar 

  105. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen P, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  106. Rao PPN, Mohamed T, Teckwani K, Tin G (2015) Curcumin binding to beta amyloid: a computational study. Chem Biol Drug Des 86:813–820

    Article  PubMed  CAS  Google Scholar 

  107. Baum L, Lam CWK, Cheung SK-K, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HFK, Goggins WB, Zee BCY, Cheng KF, Fong CYS, Wong A, Mok H, Chow MSS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CYL, Chan M-H, Szeto S, Chan IHS, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    Article  PubMed  Google Scholar 

  108. Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 115:479–489

    Article  PubMed  CAS  Google Scholar 

  109. Siddique YH, Naz F, Jyoti S (2014) Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease. Biomed Res Int 2014:606928

    PubMed  PubMed Central  Google Scholar 

  110. Daval M, Bedrood S, Gurlo T, Huang C-J, Costes S, Butler PC, Langen R (2010) The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid 17:118–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sparks S, Liu G, Robbins KJ, Lazo ND (2012) Curcumin modulates the self-assembly of the islet amyloid polypeptide by disassembling α-helix. Biochem Biophys Res Commun 422:551–555

    Article  PubMed  CAS  Google Scholar 

  112. Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77:5499–5502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein: a new mechanism for the inhibition of PrP(Sc) accumulation. J Neurochem 104:1553–1564

    Article  PubMed  CAS  Google Scholar 

  114. Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS (2015) Uncovering the mechanism of aggregation of human transthyretin. J Biol Chem 290:28932–28943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ferreira N, Santos SAO, Domingues MRM, Saraiva MJ, Almeida MR (2013) Dietary curcumin counteracts extracellular transthyretin deposition: insights on the mechanism of amyloid inhibition. Biochim Biophys Acta Mol Basis Dis 1832:39–45

    Article  CAS  Google Scholar 

  116. Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S (2015) Curcumin pyrazole and its derivative (N-(3-nitrophenylpyrazole) curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of wild type and mutant α-synuclein. Sci Rep 5:9862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Del Rio D, Stewart AJ, Mullen W, Burns J, Lean MEJ, Brighenti F, Crozier A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52:2807–2815

    Article  PubMed  CAS  Google Scholar 

  118. Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA (2013) Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett 23:6336–6340

    Article  PubMed  CAS  Google Scholar 

  119. Liu Y, Carver JA, Calabrese AN, Pukala TL (2014) Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim Biophys Acta 1844:1481–1485

    Article  PubMed  CAS  Google Scholar 

  120. Jayamani J, Shanmugam G (2014) Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur J Med Chem 85:352–358

    Article  PubMed  CAS  Google Scholar 

  121. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J Neurochem 109:1648–1657

    Article  PubMed  CAS  Google Scholar 

  122. Bruno E, Pereira C, Roman KP, Takiguchi M, Kao P-Y, Nogaj LA, Moffet DA (2013) IAPP aggregation and cellular toxicity are inhibited by 1,2,3,4,6-penta-O-galloyl-β-d-glucose. Amyloid 20:34–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Brunhofer G, Fallarero A, Karlsson D, Batista-Gonzalez A, Shinde P, Gopi Mohan C, Vuorela P (2012) Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine. Bioorgan Med Chem 20:6669–6679

    Article  CAS  Google Scholar 

  124. Herbert JM, Augereau JM, Gleye J, Maffrand JP (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172:993–999

    Article  PubMed  CAS  Google Scholar 

  125. Kim T, Hinton DJ, Choi D (2011) Protein kinase C-regulated Aβ production and clearance. Int J Alzheimers Dis 2011:857368

    PubMed  PubMed Central  Google Scholar 

  126. Ma W, Zheng WH, Belanger S, Kar S, Quirion R (2001) Effects of amyloid peptides on cell viability and expression of neuropeptides in cultured rat dorsal root ganglion neurons: a role for free radicals and protein kinase C. Eur J Neurosci 13:1125–1135

    Article  PubMed  CAS  Google Scholar 

  127. Ba F, Pang PKT, Benishin CG (2003) The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods 123:11–22

    Article  PubMed  Google Scholar 

  128. Pitt J, Roth W, Lacor P, Smith AB, Blankenship M, Velasco P, De Felice F, Breslin P, Klein WL (2009) Alzheimer’s-associated Aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol Appl Pharmacol 240:189–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB, Lee VMY (2009) Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem 110:1339–1351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Qosa H, Batarseh YS, Mohyeldin MM, El Sayed KA, Keller JN, Kaddoumi A (2015) Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem Neurosci 6:1849–1859

    Article  PubMed  CAS  Google Scholar 

  131. Galanakis PA, Bazoti FN, Bergquist J, Markides K, Spyroulias GA, Tsarbopoulos A (2011) Study of the interaction between the amyloid beta peptide (1–40) and antioxidant compounds by nuclear magnetic resonance spectroscopy. Biopolymers 96:316–327

    Article  PubMed  CAS  Google Scholar 

  132. Kostomoiri M, Fragkouli A, Sagnou M, Skaltsounis LA, Pelecanou M, Tsilibary EC, Tzinia AK (2013) Oleuropein, an anti-oxidant polyphenol constituent of olive promotes α-secretase cleavage of the amyloid precursor protein (AβPP). Cell Mol Neurobiol 33:147–154

    Article  PubMed  CAS  Google Scholar 

  133. Daccache A, Lion C, Sibille N, Gerard M, Slomianny C, Lippens G, Cotelle P (2011) Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem Int 58:700–707

    Article  PubMed  CAS  Google Scholar 

  134. Rigacci S, Guidotti V, Bucciantini M, Nichino D, Relini A, Berti A, Stefani M (2011) Aβ(1-42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr Alzheimer Res 8:841–852

    Article  PubMed  CAS  Google Scholar 

  135. Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, la Marca G, Ed Dami T, Berti A, Stefani M, Casamenti F (2015) Oleuropein aglycone protects against pyroglutamylated-3 amyloid-Δ toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 36:648–663

    Article  PubMed  CAS  Google Scholar 

  136. Diomede L, Rigacci S, Romeo M, Stefani M, Salmona M (2013) Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PLoS One. https://doi.org/10.1371/journal.pone.0058893

    Article  PubMed  PubMed Central  Google Scholar 

  137. Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, Failli P, Berti A, Casamenti F, Stefani M (2013) The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One 8:e71702. https://doi.org/10.1371/journal.pone.0071702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Grossi C, EdDami T, Rigacci S, Stefani M, Luccarini I, Casamenti F (2014) Employing Alzheimer disease animal models for translational research: focus on dietary components. Neurodegener Dis 13:131–134

    Article  PubMed  CAS  Google Scholar 

  139. Rigacci S, Guidotti V, Bucciantini M, Parri M, Nediani C, Cerbai E, Stefani M, Berti A (2010) Oleuropein aglycon prevents cytotoxic amyloid aggregation of human amylin. J Nutr Biochem 21:726–735

    Article  PubMed  CAS  Google Scholar 

  140. Palazzi L, Bruzzone E, Bisello G, Leri M, Stefani M, Bucciantini M, Polverino de Laureto P (2018) Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Sci Rep 8:8337

    Article  PubMed  PubMed Central  Google Scholar 

  141. Leri M, Nosi D, Natalello A, Porcari R, Ramazzotti M, Chiti F, Bellotti V, Doglia SM, Stefani M, Bucciantini M (2016) The polyphenol oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies. J Nutr Biochem 30:153–166

    Article  PubMed  CAS  Google Scholar 

  142. Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, Lopez Del Amo JM, Grüning BA, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank RF, Reif B, Günther S, Walsh DM, Wanker EE (2011) Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat Chem Biol 8:93–101

    Article  PubMed  CAS  Google Scholar 

  143. Lam HT, Graber MC, Gentry KA, Bieschke J (2016) Stabilization of α-synuclein fibril clusters prevents fragmentation and reduces seeding activity and toxicity. Biochemistry 55:675–685

    Article  PubMed  CAS  Google Scholar 

  144. Gao M, Estel K, Seeliger J, Friedrich RP, Dogan S, Wanker EE, Winter R, Ebbinghaus S (2015) Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Phys Chem Chem Phys 17:8338–8348

    Article  PubMed  CAS  Google Scholar 

  145. Ladiwala ARA, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J Biol Chem 285:24228–24237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ge JF, Qiao JP, Qi CC, Wang CW, Zhou JN (2012) The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61:1192–1201

    Article  PubMed  CAS  Google Scholar 

  147. Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M, Huang L, Liu RT (2009) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30:986–995

    Article  PubMed  CAS  Google Scholar 

  148. He X, Li Z, Rizak JD, Wu S, Wang Z, He R, Su M, Qin D, Wang J, Hu X (2017) Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Neuroscience, Front. https://doi.org/10.3389/fnins.2016.00598

    Book  Google Scholar 

  149. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54:111–118

    Article  PubMed  CAS  Google Scholar 

  150. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382

    Article  PubMed  CAS  Google Scholar 

  151. Wang R, Zhang Y, Li J, Zhang C (2017) Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience 344:39–47

    Article  PubMed  CAS  Google Scholar 

  152. Porquet D, Griñán-Ferré C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallàs M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42:1209–1220

    Article  PubMed  CAS  Google Scholar 

  153. Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT (2015) Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 310:641–649

    Article  PubMed  CAS  Google Scholar 

  154. Yao Y, Li J, Niu Y, Yu J, Yan L, Miao Z, Zhao X, Li Y, Yao W, Zheng P, Li W (2015) Resveratrol inhibits oligomeric Abeta-induced microglial activation via NADPH oxidase. Med Rep, Mol. https://doi.org/10.3892/mmr.2015.4199

    Book  Google Scholar 

  155. Huang TC, Lu KT, Wo YYP, Wu YJ, Yang YL (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6:e29102. https://doi.org/10.1371/journal.pone.0029102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MAN, Pereira MC, Latruffe N (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 22:E277. https://doi.org/10.3390/molecules22020277

    Article  PubMed  CAS  Google Scholar 

  157. Köbe T, Witte AV, Schnelle A, Tesky VA, Pantel J, Schuchardt JP, Hahn A, Bohlken J, Grittner U, Flöel A (2017) Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Front Neurosci. https://doi.org/10.3389/fnins.2017.00105

    Article  PubMed  PubMed Central  Google Scholar 

  158. Turner RS, Thomas RG, Craft S, Van Dyck CH, Mintzer J, Reynolds BA, Brewer JB, Rissman RA, Raman R, Aisen PS (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1383–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Pithadia A, Brender JR, Fierke CA, Ramamoorthy A (2016) Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res 2016:2046327. https://doi.org/10.1155/2016/2046327

    Article  PubMed  CAS  Google Scholar 

  160. Wang Q, Ning L, Niu Y, Liu H, Yao X (2015) Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP(1–37)) oligomer by resveratrol from molecular dynamics simulation. J Phys Chem B 119:15–24

    Article  PubMed  CAS  Google Scholar 

  161. Lolicato F, Raudino A, Milardi D, La Rosa C (2015) Resveratrol interferes with the aggregation of membrane-bound human-IAPP: a molecular dynamics study. Eur J Med Chem 92:876–881

    Article  PubMed  CAS  Google Scholar 

  162. Tu LH, Young LM, Wong AG, Ashcroft AE, Radford SE, Raleigh DP (2015) Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 54:666–676

    Article  PubMed  CAS  Google Scholar 

  163. Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Ke PC, Ding F (2016) Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep 6:19463. https://doi.org/10.1038/srep19463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wei L, Jiang P, Xu W, Li H, Zhang H, Yan L, Chan-Park MB, Liu XW, Tang K, Mu Y, Pervushin K (2011) The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. J Biol Chem 286:6291–6300

    Article  PubMed  CAS  Google Scholar 

  165. Jiang P, Li W, Shea JE, Mu Y (2011) Resveratrol inhibits the formation of multiple-layered β-Sheet oligomers of the human islet amyloid polypeptide segment 22–27. Biophys J 100:1550–1558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Mishra R, Sellin D, Radovan D, Gohlke A, Winter R (2009) Inhibiting islet amyloid polypeptide fibril formation by the red wine compound resveratrol. ChemBioChem. 10:445–449

    Article  PubMed  CAS  Google Scholar 

  167. Sciacca MFM, Chillemi R, Sciuto S, Greco V, Messineo C, Kotler SA, Lee DK, Brender JR, Ramamoorthy A, La Rosa C, Milardi D (2018) A blend of two resveratrol derivatives abolishes hIAPP amyloid growth and membrane damage. Biochim Biophys Acta Biomembr. https://doi.org/10.1016/j.bbamem.2018.03.012

    Article  PubMed  Google Scholar 

  168. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350

    Article  PubMed  CAS  Google Scholar 

  169. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC (2000) Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol 7:312–321

    Article  PubMed  CAS  Google Scholar 

  170. Akasaki Y, Reixach N, Matsuzaki T, Alvarez-Garcia O, Olmer M, Iwamoto Y, Buxbaum JN, Lotz MK (2015) Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis. Arthritis Rheumatol 67:2097–2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  PubMed  CAS  Google Scholar 

  172. Yamada M, Ono K, Hamaguchi T, Noguchi-Shinohara M (2015) Natural phenolic compounds as therapeutic and preventive agents for cerebral amyloidosis. Adv Exp Med Biol 863:79–95

    Article  PubMed  CAS  Google Scholar 

  173. Ono K, Li L, Takamura Y, Yoshiike Y, Zhu L, Han F, Mao X, Ikeda T, Takasaki JI, Nishijo H, Takashima A, Teplow DB, Zagorski MG, Yamada M (2012) Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site specific binding. J Biol Chem 287:14631–14643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Iuvone T, De Filippis D, Esposito G, Amico AD, Izzo AA, D’Amico A (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149

    Article  PubMed  CAS  Google Scholar 

  175. Lee AY, Hwang BR, Lee MH, Lee S, Cho EJ (2016) Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25–35 induced impairment of cognition and memory function. Nutr Res Pract 10:274–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ramazzotti M, Melani F, Marchi L, Mulinacci N, Gestri S, Tiribilli B, Degl’Innocenti D (2016) Mechanisms for the inhibition of amyloid aggregation by small ligands. Biosci Rep 36:e00385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Shariatizi S, Meratan AA, Ghasemi A, Nemat-Gorgani M (2015) Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols. Int J Biol Macromol 80:95–106

    Article  PubMed  CAS  Google Scholar 

  179. Rashidi AA, Mirhashemi SM, Taghizadeh M, Sarkhail P (2013) Iranian medicinal plants for diabetes mellitus: a systematic review. Pakistan J Biol Sci PJBS 16:401–411

    Article  Google Scholar 

  180. Zheng Q, Lazo LD (2018) Mechanistic studies of the inhibition of insulin fibril formation by rosmarinic acid. J Phys Chem B 122:2323–2331

    Article  PubMed  CAS  Google Scholar 

  181. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Biochim Biophys Acta 1690:193–202

    Article  PubMed  CAS  Google Scholar 

  182. Kocisko DA, Engel AL, Harbuck K, Arnold KM, Olsen EA, Raymond LD, Vilette D, Caughey B (2005) Comparison of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse and sheep scrapie. Neurosci Lett 388:106–111

    Article  PubMed  CAS  Google Scholar 

  183. Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B (2003) New inhibitors of scrapie-associated prion protein formation in a Library of 2,000 drugs and natural products. J Virol 77:10288–10294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Wolfe LL, Kocisko DA, Caughey B, Miller MW (2012) Assessment of prospective preventive therapies for chronic wasting disease in Mule Deer. J Wildl Dis 48:530–533

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lü J (2012) Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 13:13621–13666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 4:1004–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Mei Z, Yan P, Situ B, Mou Y, Liu P (2012) Cryptotanshinione inhibits β-amyloid aggregation and protects damage from β-amyloid in SH-SY5Y cells. Neurochem Res 37:622–628

    Article  PubMed  CAS  Google Scholar 

  188. Ji K, Zhao Y, Yu T, Wang Z, Gong H, Yang X, Liu Y, Huang K (2016) Inhibition effects of tanshinone on the aggregation of α-synuclein. Food Funct 7:409–416

    Article  PubMed  CAS  Google Scholar 

  189. Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC, Santamaria R, Irace C, De Feo V, Calignano A, Mascolo N, Bifulco G (2018) Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol Res 129:482–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Moreno-Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhouafli, Z., Cuanalo-Contreras, K., Hayouni, E.A. et al. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell. Mol. Life Sci. 75, 3521–3538 (2018). https://doi.org/10.1007/s00018-018-2872-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2872-2

Keywords

Navigation