Skip to main content

Advertisement

Log in

Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ1–42 mouse model of AD. Single intracerebroventricular injections of Aβ1–42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ1–42 injection significantly decreased the Aβ1–42-induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ1–42-induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ1–42-treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ1–42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ1–42-treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ1–42-induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Zhao X, Xu X, Mao X, Liu Z, Li H, Guo L, Bi K, Jia Y (2014) Schisantherin A recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav 132:10–6

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Wang S, Yu L, Zhu X, Xu Y (2015) Esculentoside A suppresses Aβ(1–42)-induced neurinflammation by down-regulating MAPKs pathways in vivo. Neurol Res 37:859–66

    Article  CAS  PubMed  Google Scholar 

  4. Lazzari C, Kipanyula MJ, Agostini M, Pozzan T, Fasolato C (2015) Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol Aging 36:877–85

    Article  CAS  PubMed  Google Scholar 

  5. Pozueta J, Lefort R, Shelanski ML (2013) Synaptic changes in Alzheimer’s disease and its models. Neuroscience 251:51–65

    Article  CAS  PubMed  Google Scholar 

  6. Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S (2014) Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ulrich D (2015) Amyloid-beta impairs synaptic inhibition via GABA (A) receptor endocytosis. J Neurosci 35:9205–10

    Article  CAS  PubMed  Google Scholar 

  8. Varga E, Juhasz G, Bozso Z, Penke B, Fulop L, Szeqedi V (2015) Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis 45:449–56

    CAS  PubMed  Google Scholar 

  9. Badshah H, Kim TH, Kim MO (2015) Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem Int 80:51–9

    Article  CAS  PubMed  Google Scholar 

  10. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats. PLoS One 10:e0116549

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB (2008) Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 39:1–16

    Article  CAS  PubMed  Google Scholar 

  13. Shi X, Zheng Z, Li J, Xiao Z, Qi W, Zhang A, Wu Q, Fang Y (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–10

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, Quehenberger O, Maher P (2014) Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell 13:379–90

    Article  CAS  PubMed  Google Scholar 

  17. Maher P (2015) How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 7:58–82

    Article  Google Scholar 

  18. Echeverry C, Arredondo F, Martinez M, Abin-Carriquiry JA, Midiwo J, Dajas F (2015) Antioxidant activity, cellular bioavailability, and iron and calcium management of neuroprotective and nonneuroprotective flavones. Neurotox Res 27:31–42

    Article  CAS  PubMed  Google Scholar 

  19. Akaishi T, Morimoto T, Shibao M, Watanabe S, Sakai-Kato K, Utsunomiva-Tate N, Abe K (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett 444:280–5

    Article  CAS  PubMed  Google Scholar 

  20. Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neuromolecular Med 15:192–208

    Article  CAS  PubMed  Google Scholar 

  21. Prakash D, Sudhandiran G (2015) Dietary flavonoid fisetin regulates aluminium chloride induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 26:1527–39

    Article  CAS  PubMed  Google Scholar 

  22. Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 20:261–70

    Article  CAS  PubMed  Google Scholar 

  23. Maher P (2009) Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr 4:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6:e21226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou CH, Wang CX, Xie GB, Wu LY, Wei YX, Wang Q, Zhang HS, Hang CH, Zhou ML, Shi JX (2015) Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR4/NF-kB signaling pathway. Brain Res 1629:250–9

    Article  CAS  PubMed  Google Scholar 

  26. Bretteville A, Marcouiller F, Julien C, EI Khoury NB, Petry FR, Poitras I, Mouginot D, Levesque G, Hebert SS, Planel E (2012) Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2:480

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ali T, Badshah H, Kim T, Kim MO (2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/JNK signaling pathway in aging mouse model. J Pineal Res 58:71–85

    Article  CAS  PubMed  Google Scholar 

  28. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2016) Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 26738855:1–17

    Google Scholar 

  29. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSK3β pathway in the mouse hippocampus. J Pineal Res 59:47–59

    Article  CAS  PubMed  Google Scholar 

  30. Badshah H, Ali T, Rehman SU, Amin FU, Ullah F, Kim TH, Kim MO (2015) Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-jun N-terminal kinase pathway in the adult mouse brain. J Neuroimmune Pharamacol 11:48–60

    Article  Google Scholar 

  31. Shah SA, Yoon GH, Kim MO (2015) Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol Neurobiol 51:1278–91

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106

    Article  CAS  PubMed  Google Scholar 

  33. Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, Sole M, Trullas R, Saura CA, Rodriguez-Alvarez J (2011) Soluble oligomers of amyloid-β peptide disrupt membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 286:27311–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mercado-Gomez O, Hernandez-Fonseca K, Villavicencio-Queijeiro A, Massieu L, Chimal-Monroy J, Arias C (2008) Inhibition of Wnt and PI3K signaling modulates GSK-3beta activity and induces morphological changes in cortical neurons: role of tau phosphorylation. Neurochem Res 33:1599–609

    Article  CAS  PubMed  Google Scholar 

  35. Ali T, Yoon GH, Shah SA, Lee HY, Kim MO (2015) Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 5:11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–32

    Article  CAS  PubMed  Google Scholar 

  37. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akhtar R, Sanphui P, Biswas SC (2014) The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 289:10812–22

    Article  Google Scholar 

  39. Strosznajder JB, Jesko H, Strosznajder RP (2000) Effect of amyloid beta peptide on poly (ADP-ribose) polymerase activity in adult and aged rat hippocampus. Acta Biochim Pol 47:847–54

    CAS  PubMed  Google Scholar 

  40. Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 287:35222–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woodruff-Pak DS (2008) Animal models of Alzheimer's disease: therapeutic implications. J Alzheimers Dis 15:507–21

    Article  CAS  PubMed  Google Scholar 

  42. Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, De Strooper B, Buee L (2012) Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 32:7852–61

    Article  CAS  PubMed  Google Scholar 

  43. Malm T, Ort M, Tahtivaara L, Jukarainen N, Goldsteins G, Puolivali J, Nurmi A, Pussinen R, Ahtoniemi T, Miettinen TK, Kanninen K, Leskinen S, Vartiainen N, Yrjanheikki J, Laatikainen R, Harris-White ME, Koistinaho M, Frautschy SA, Bures J, Koistinaho J (2006) beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S A 103:8852–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim CA, Yamaguchi H, Fandrich M, Walter J, Thal DR (2014) Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease. Brain 137:887–903

    Article  PubMed  Google Scholar 

  45. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–12

    Article  CAS  PubMed  Google Scholar 

  46. Mao X, Liao Z, Guo L, Xu X, Wu B, Xu M, Zhao X, Bi K, Jia Y (2015) Schisandrin C ameliorates learning and memory deficits by Aβ1-42-induced oxidative stress and neurotoxicity in mice. Phytother Res Dio:10.1002/ptr.5390.

  47. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Milinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–51

    Article  CAS  PubMed  Google Scholar 

  49. Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24:916–927

    Article  CAS  PubMed  Google Scholar 

  50. Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133:135–41

    Article  CAS  PubMed  Google Scholar 

  51. Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349

    Article  CAS  PubMed  Google Scholar 

  52. Wei L, Lv S, Huang Q, Wei J, Zhang S, Huang R, Lu Z, Lin X (2015) Pratensein attenuates Aβ-induced cognitive deficits in rats: enhancement of synaptic plasticity and cholinergic function. Fitoterapia 101:208–17

    Article  CAS  PubMed  Google Scholar 

  53. Cho N, Lee KY, Huh J, Choi JH, Yang H, Jeong EJ, Kim HP, Sung SH (2013) Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chem Toxicol 58:355–61

    Article  CAS  PubMed  Google Scholar 

  54. Middei S, Houeland G, Cavallucci V, Ammassari-Teule M, D’Amelio M, Marie H (2013) CREB is necessary for synaptic maintenance and learning-induced changes of the AMPA receptor GluA1 subunit. Hippocampus 23:488–99

    Article  CAS  PubMed  Google Scholar 

  55. Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C, Ruano D, Gutierrez A, Vitorica J (2011) Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. J Biol Chem 286:18414–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–9

    Article  CAS  PubMed  Google Scholar 

  57. Van Weeren PC, De Bruyn KM, De Vries-Smits AM, Van Lint J, Burgering BM (1998) Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem 273:13150–6

    Article  PubMed  Google Scholar 

  58. Koh SH, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–62

    Article  CAS  PubMed  Google Scholar 

  59. Bao XQ, Li N, Wang T, Kong XC, Tai WJ, Sun H, Zhang D (2013) FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer's disease via decreasing beta-amyloid production and tau hyperphosphorylation. PLoS One 8:e78033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jin N, Yin X, Yu D, Cao M, Gong CX, Iqbal K, Ding F, Gu X, Liu F (2015) Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–55

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Luhrs KJ, Ryff KA, Malik WT, Driscoll MJ, Culver B (2009) Suppression of nuclear factor kappa B ameliorates astrogliosis but not amyloid burden in APPswe/PS1dE9 mice. Neuroscience 161:53–8

    Article  CAS  PubMed  Google Scholar 

  63. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease- a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346

    Article  PubMed  PubMed Central  Google Scholar 

  64. LaFerla FM, Hall CK, Ngo L, Jay G (1996) Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 98:1626–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akhter R, Sanphui P, Das H, Saha P, Biswas SC (2015) The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J Neurochem 134:1091–103

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Dai YB, Sun JY, Xiang Y, Yang J, Dai SY, Zhang X (2015) Neuroglobin attenuates beta amyloid-induced apoptosis through inhibiting caspases activity by activating PI3K/Akt signaling pathway. J Mol Neurosci 58:28–38

    Article  PubMed  Google Scholar 

  67. Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012) Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer's disease. Mol Neurobiol 46:78–84

    Article  CAS  PubMed  Google Scholar 

  68. Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vauzour D (2014) Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J Sci Food Agric 94:1042–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2012–0009521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Ok Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Ali, T., Park, H.Y. et al. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice. Mol Neurobiol 54, 2269–2285 (2017). https://doi.org/10.1007/s12035-016-9795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9795-4

Keywords

Navigation