Skip to main content

Advertisement

Log in

Natural Phenolic Compounds with Neuroprotective Effects

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington’s (HD), Alzheimer’s (AD), and Parkinson’s (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Maqbool M, Zehravi M (2021) Neuroprotective role of polyphenols in treatment of neurological disorders: a review. Interv Pain Med Neuromod 1:e117170

    Article  Google Scholar 

  2. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, Santos CND (2021) Overview of beneficial effects of (poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients 13:2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kausar S, Wang F, Cui H (2018) The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 7:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  7. González-Sarrías A, Núñez-Sánchez MA, Tomás-Barberán FA, Espín JC (2017) Neuroprotective effects of bioavailable polyphenol-derived metabolites against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Agric Food Chem 65:752–758

    Article  PubMed  Google Scholar 

  8. Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM (2018) Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 120:183–195

    Article  CAS  PubMed  Google Scholar 

  9. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hinnell C, Hurt CS, Landau S, Brown RG, Samuel M, Group PPS (2012) Nonmotor versus motor symptoms: how much do they matter to health status in Parkinson’s disease? Mov Disord 27:236–241

    Article  PubMed  Google Scholar 

  11. Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7:a021287

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8:387–402

    Article  CAS  PubMed  Google Scholar 

  13. Kujawska M, Jodynis-Liebert J (2018) What is the evidence that Parkinson’s disease is a prion disorder, which originates in the gut? Int J Mol Sci 19:3573

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, Samhan-Arias AK, Bueno C, Garcia-Martinez V (2011) Neuroprotective actions of flavonoids. Curr Med Chem 18:1195–1212

    Article  CAS  PubMed  Google Scholar 

  15. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aarsland D, Brønnick K, Larsen J, Tysnes O, Alves G (2009) Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72:1121–1126

    Article  CAS  PubMed  Google Scholar 

  17. Ullah F, Ayaz M, Sadiq A, Hussain A, Ahmad S, Imran M, Zeb A (2016) Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var florentina. Nat Prod Res 30:1440–1444

    Article  CAS  PubMed  Google Scholar 

  18. Kamal Z, Ullah F, Ayaz M, Sadiq A, Ahmad S, Zeb A, Hussain A, Imran M (2015) Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol Res 48:1–11

    Article  Google Scholar 

  19. Lane DJ, Ayton S, Bush AI (2018) Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64:S379–S395

    Article  CAS  PubMed  Google Scholar 

  20. Colizzi C (2019) The protective effects of polyphenols on Alzheimer’s disease: a systematic review. Alzheimers Dement (N Y) 5:184–196

    Article  PubMed  Google Scholar 

  21. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  22. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27:1083–1089

    Article  PubMed  Google Scholar 

  23. Bhullar KS, Rupasinghe H (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013:1–18

    Article  Google Scholar 

  24. Walker R, Jung H, Dobson-Stone C, Rampoldi L, Sano A, Tison F, Danek A (2007) Neurologic phenotypes associated with acanthocytosis. Neurology 68:92–98

    Article  CAS  PubMed  Google Scholar 

  25. Kazantsev A, Walker HA, Slepko N, Bear JE, Preisinger E, Steffan JS, Zhu YZ, Gertler FB, Housman DE, Marsh JL (2002) A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 30:367–376

    Article  CAS  PubMed  Google Scholar 

  26. Johri A, Beal MF (2012) Antioxidants in Huntington’s disease. Biochim Biophys Acta 1822:664–674

    Article  CAS  PubMed  Google Scholar 

  27. Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development, 6th edn. Sunderland, Sinauer Associates Incorporated, pp 1–761

    Google Scholar 

  28. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  29. Chiorcea-Paquim AM, Enache TA, De Souza GE, Oliveira-Brett AM (2020) Natural phenolic antioxidants electrochemistry: towards a new food science methodology. Compr Rev Food Sci Food Saf 19:1680–1726

    Article  CAS  PubMed  Google Scholar 

  30. de la Luz Cádiz-Gurrea M, Fernández-Ochoa Á, del Carmen V-A, Arráez-Román D, Segura-Carretero A (2022) Therapeutic targets for phenolic compounds from agro-industrial by-products against obesity. Curr Med Chem 29:1083–1098

    Article  Google Scholar 

  31. del Carmen Villegas-Aguilar M, Fernández-Ochoa Á, Leyva-Jiménez FJ, Miranda-Segura Á, de la Luz Cádiz-Gurrea M, Segura-Carretero A (2022) Phenolic compounds. In: Cazarin CBB, Bicas JL, Pastore GM, Junior MRM (eds) Bioactive food components activity in mechanistic approach, 1st edn. Elsevier, Amsterdam, pp 27–53

    Chapter  Google Scholar 

  32. Ataie A, Shadifar M, Ataee R (2016) Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci 7:81–90

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Panickar KS, Jang S (2013) Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia. Recent Pat Food Nutr Agric 5:128–143

    Article  CAS  PubMed  Google Scholar 

  34. Holczer M, Besze B, Zámbó V, Csala M, Bánhegyi G, Kapuy O (2018) Epigallocatechin-3-gallate (EGCG) promotes autophagy-dependent survival via influencing the balance of mTOR-AMPK pathways upon endoplasmic reticulum stress. Oxid Med Cell Longev 2018:6721530

    Article  PubMed  PubMed Central  Google Scholar 

  35. Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capo X, Cabot J, Sanadgol N, Giampieri F (2021) The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 128:437–453

    Article  CAS  PubMed  Google Scholar 

  36. Pitozzi V, Jacomelli M, Catelan D, Servili M, Taticchi A, Biggeri A, Dolara P, Giovannelli L (2012) Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress. Rejuvenation Res 15:601–612

    Article  CAS  PubMed  Google Scholar 

  37. Cásedas G, Les F, Gómez-Serranillos MP, Smith C, López V (2017) Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: a comparative study. Food Funct 8:4187–4193

    Article  PubMed  Google Scholar 

  38. Imran A, Arshad MU, Sherwani H, Shabir Ahmad R, Arshad MS, Saeed F, Hussain G, Afzaal M, Imran M, Naeem U (2021) Antioxidant capacity and characteristics of theaflavin catechins and ginger freeze-dried extract as affected by extraction techniques. Int j food prop 24:1097–1116

    Article  CAS  Google Scholar 

  39. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751

    Article  CAS  PubMed  Google Scholar 

  40. Bhatt R, Singh D, Prakash A, Mishra N (2015) Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 22:931–939

    Article  CAS  PubMed  Google Scholar 

  41. Bak J, Kim HJ, Kim SY, Choi YS (2016) Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. Korean J Physiol Pharmacol 20:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Richetti S, Blank M, Capiotti K, Piato A, Bogo M, Vianna M, Bonan C (2011) Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 217:10–15

    Article  CAS  PubMed  Google Scholar 

  43. Gallagher S (2010) Treating Parkinson’s disease: dopamine dysregulation syndrome and impulse control. Br J Neurosci Nurs 6:24–28

    Article  Google Scholar 

  44. Chen H, Zhao EJ, Zhang W, Lu Y, Liu R, Huang X, Ciesielski-Jones AJ, Justice MA, Cousins DS, Peddada S (2015) Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis. Transl Neurodegener 4:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Datla KP, Zbarsky V, Rai D, Parkar S, Osakabe N, Aruoma OI, Dexter DT (2007) Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J Am Coll Nutr 26:341–349

    Article  CAS  PubMed  Google Scholar 

  46. Tandon A, Singh SJ, Chaturvedi RK (2018) Stem cells as potential targets of polyphenols in multiple sclerosis and Alzheimer’s disease. Biomed Res Int 2018:1483791

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shabani S, Rabiei Z, Amini-Khoei H (2020) Exploring the multifaceted neuroprotective actions of gallic acid: a review. Int J Food Prop 23:736–752

    Article  CAS  Google Scholar 

  48. Mohammad-Beigi H, Aliakbari F, Sahin C, Lomax C, Tawfike A, Schafer NP, Amiri-Nowdijeh A, Eskandari H, Møller IM, Hosseini-Mazinani M (2019) Oleuropein derivatives from olive fruit extracts reduce α-synuclein fibrillation and oligomer toxicity. J Biol Chem 294:4215–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Venkatesan R, Ji E, Kim SY (2015) Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: a comprehensive review. Biomed Res Int 2015:814068

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D (2020) Brain-derived neurotrophic factor and diabetes. Int J Mol Sci 21:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA (2014) Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2:246–255

    Article  PubMed  Google Scholar 

  52. Arias-Sánchez RA, Torner L, Fenton Navarro B (2023) Polyphenols and neurodegenerative diseases: potential effects and mechanisms of neuroprotection. Molecules 28:5415

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mohammadi A, Amooeian VG, Rashidi E (2018) Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to Schizophrenia, Parkinson’s and Alzheimer’s Diseases. Curr Gene Ther 18:45–63

    Article  CAS  PubMed  Google Scholar 

  54. Zhang S, Xue R, Hu R (2020) The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur J Nutr 59:1295–1311

    Article  PubMed  Google Scholar 

  55. Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S (2020) Bioactive polyphenols and neuromodulation: molecular mechanisms in neurodegeneration. Int J Mol Sci 21:2564

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ye S, Xie DJ, Zhou P, Gao HW, Zhang MT, Chen DB, Qin YP, Lei X, Li XQ, Liu J, Cheng YX, Yao YC, Cai B, Shen GM (2021) Huang-Pu-Tong-Qiao formula ameliorates the hippocampus apoptosis in diabetic cognitive dysfunction mice by activating CREB/BDNF/TrkB signaling pathway. Evid Based Complement Alternat Med 2021:5514175

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rojas-García A, Fernández-Ochoa Á, Cádiz-Gurrea ML, Arráez-Román D, Segura-Carretero A (2023) Neuroprotective effects of agri-food by-products rich in phenolic compounds. Nutrients 15:449

    Article  PubMed  PubMed Central  Google Scholar 

  58. Quiñones M, Miguel M, Aleixandre A (2012) Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutr Hosp 27:76–89

    PubMed  Google Scholar 

  59. Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G (2022) Phenolic acids and prevention of cognitive decline: polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients 14:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  PubMed  Google Scholar 

  61. Costain L (2001) Super nutrients handbook/Lyndel Costain. Dorling Kindersley, St Leonards, pp 1–128

    Google Scholar 

  62. Jurikova T, Mlcek J, Skrovankova S, Balla S, Sochor J, Baron M, Sumczynski D (2016) Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules 21:1685

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chandrasekara A, Shahidi F (2018) Herbal beverages: Bioactive compounds and their role in disease risk reduction—a review. J Tradit Complement Med 8:451–458

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kiokias S, Oreopoulou V (2021) A review of the health protective effects of phenolic acids against a range of severe pathologic conditions (including coronavirus-based infections). Molecules 26:5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370

    Article  Google Scholar 

  66. Vinayagam R, Jayachandran M, Xu B (2016) Antidiabetic effects of simple phenolic acids: a comprehensive review. Phytother Res 30:184–199

    Article  CAS  PubMed  Google Scholar 

  67. Szwajgier D, Borowiec K, Pustelniak K (2017) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  68. Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F (2021) Improving cognition with nutraceuticals targeting tgf-β1 signaling. Antioxidants 10:1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taram F, Winter AN, Linseman DA (2016) Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons. Brain Res 1648:69–80

    Article  CAS  PubMed  Google Scholar 

  70. Naghizadeh B, Mansouri M (2015) Protective effects of gallic acid against streptozotocin-induced oxidative damage in rat striatum. Drug Res 65:515–520

    CAS  Google Scholar 

  71. Gerzson MF, Bona NP, Soares MS, Teixeira FC, Rahmeier FL, Carvalho FB, da Cruz FM, Onzi G, Lenz G, Gonçales RA (2020) Tannic acid ameliorates STZ-induced Alzheimer’s disease-like impairment of memory, neuroinflammation, neuronal death and modulates Akt expression. Neurotox Res 37:1009–1017

    Article  CAS  PubMed  Google Scholar 

  72. Fetoni AR, Paciello F, Mezzogori D, Rolesi R, Eramo SLM, Paludetti G, Troiani D (2015) Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling. Br J Cancer 113:1434–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guven M, Aras AB, Akman T, Sen HM, Ozkan A, Salis O, Sehitoglu I, Kalkan Y, Silan C, Deniz M (2015) Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iran J Basic Med Sci 18:356

    PubMed  PubMed Central  Google Scholar 

  74. Shamsara A, Sheibani V, Asadi-Shekaari M, Nematollahi-Mahani SN (2018) Neural like cells and acetyl-salicylic acid alter rat brain structure and function following transient middle cerebral artery occlusion. Biomol Concepts 9:155–168

    Article  CAS  PubMed  Google Scholar 

  75. Guan S, Bao YM, Jiang B, An LJ (2006) Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol 538:73–79

    Article  CAS  Google Scholar 

  76. Lee HE, Kim DH, Park SJ, Kim JM, Lee YW, Jung JM, Lee CH, Hong JG, Liu X, Cai M (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid β1–42 protein-induced Alzheimer’s disease. Pharmacol Biochem Behav 103:260–266

    Article  CAS  PubMed  Google Scholar 

  77. Zhang B, Zhong Q, Chen X, Wu X, Sha R, Song G, Zhang C, Chen X (2020) Neuroprotective effects of celastrol on transient global cerebral ischemia rats via regulating HMGB1/NF-κB signaling pathway. Front Neurosci 14:847

    Article  PubMed  PubMed Central  Google Scholar 

  78. Martinez KB, Mackert JD, McIntosh MK (2017) Polyphenols and intestinal health. Nutrition and functional foods for healthy aging. Elsevier, Amsterdam, pp 191–210

    Chapter  Google Scholar 

  79. Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489–2491

    Article  CAS  Google Scholar 

  80. Sichel G, Corsaro C, Scalia M, Di Bilio AJ, Bonomo RP (1991) In vitro scavenger activity of some flavonoids and melanins against O2− dot. Free Radic Biol Med 11:1–8

    Article  CAS  PubMed  Google Scholar 

  81. Arora A, Nair MG, Strasburg GM (1998) Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    Article  CAS  PubMed  Google Scholar 

  82. Heijnen CG, Haenen GR, Vekemans JA, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environ Toxicol Pharmacol 10:199–206

    Article  CAS  PubMed  Google Scholar 

  83. Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JPE (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103:1355–1367

    Article  CAS  PubMed  Google Scholar 

  84. Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99:ES60–ES77

    Article  PubMed  Google Scholar 

  85. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 17:1–21

    Google Scholar 

  88. Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Aβ(1–42): relevance to Alzheimer’s disease. J Nutr Biochem 20:269–275

    Article  CAS  PubMed  Google Scholar 

  89. Jayasena T, Poljak A, Smythe G, Braidy N, Münch G, Sachdev P (2013) The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease. Ageing Res Rev 12:867–883

    Article  CAS  PubMed  Google Scholar 

  90. Wang LJ, Lu YY, Si M, Ikeguchi K, Fujimoto KI, Okada T, Mizukami H, Matsushita T, Hanazono Y, Kume A, Nagatsu T, Ozawa K, Nakano I (2002) Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22:6920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang W, Qin L, Wang T, Wei SJ, Gao HM, Liu J, Wilson B, Liu B, Zhang W, Kim HC, Hong JS (2005) 3-Hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J 19:1–25

    Article  Google Scholar 

  92. Hu XM, Zhou MM, Hu XM, Zeng FD (2005) Neuroprotective effects of scutellarin on rat neuronal damage induced by cerebral ischemia/reperfusion. Acta Pharmacol Sin 26:1454–1459

    Article  CAS  PubMed  Google Scholar 

  93. Li G, Min BS, Zheng C, Lee J, Oh SR, Ahn KS, Lee HK (2005) Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Arch Pharm Res 28:804–809

    Article  CAS  PubMed  Google Scholar 

  94. Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236:13–23

    Article  CAS  PubMed  Google Scholar 

  95. Yu XQ, Xue CC, Zhou ZW, Li CG, Du YM, Liang J, Zhou SF (2008) In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci 82:68–78

    Article  CAS  PubMed  Google Scholar 

  96. Cohen-Salmon C, Venault P, Martin B, Raffalli-Sébille MJ, Barkats M, Clostre F, Pardon MC, Christen Y, Chapouthier G (1997) Effects of Ginkgo biloba extract (EGb 761) on learning and possible actions on aging. J Physiol Paris 91:291–300

    Article  CAS  PubMed  Google Scholar 

  97. Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, Finn MB, Holtzman DM (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24:506–511

    Article  CAS  PubMed  Google Scholar 

  98. Casini ML, Marelli G, Papaleo E, Ferrari A, D’Ambrosio F, Unfer V (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85:972–978

    Article  CAS  PubMed  Google Scholar 

  99. Shang YZ, Qin BW, Cheng JJ, Miao H (2006) Prevention of oxidative injury by flavonoids from stems and leaves of Scutellaria Baicalensis georgi in PC12 cells. Phytother Res 20:53–57

    Article  CAS  PubMed  Google Scholar 

  100. Zhang HY, Tang XC (2006) Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease. Trends Pharmacol Sci 27:619–625

    Article  CAS  PubMed  Google Scholar 

  101. Gallardo-Fernández M, Hornedo-Ortega R, Alonso-Bellido IM, Rodríguez-Gómez JA, Troncoso AM, García-Parrilla MC, Venero JL, Espinosa-Oliva AM, de Pablos RM (2020) Hydroxytyrosol decreases LPS- and α-synuclein-induced microglial activation in vitro. Antioxidants 9:36

    Article  Google Scholar 

  102. Macedo D, Jardim C, Figueira I, Almeida AF, McDougall GJ, Stewart D, Yuste JE, Tomás-Barberán FA, Tenreiro S, Outeiro TF, Santos CN (2018) (Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci Rep 8:6965

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lagoa R, Lopez-Sanchez C, Samhan-Arias AK, Gañan CM, Garcia-Martinez V, Gutierrez-Merino C (2009) Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid. J Neurochem 111:473–487

    Article  CAS  PubMed  Google Scholar 

  104. Kumar P, Kalonia H, Kumar A (2010) Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 62:1–14

    Article  CAS  PubMed  Google Scholar 

  105. Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D (2023) Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 15:3454

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bauerova K, Acquaviva A, Ponist S, Gardi C, Vecchio D, Drafi F, Arezzini B, Bezakova L, Kuncirova V, Mihalova D (2015) Markers of inflammation and oxidative stress studied in adjuvant-induced arthritis in the rat on systemic and local level affected by pinosylvin and methotrexate and their combination. Autoimmunity 48:46–56

    Article  CAS  PubMed  Google Scholar 

  107. Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev 2015:340520

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mekinić IG, Skroza D, Ljubenkov I, Katalinić V (2016) Insight into the presence of stilbenes in medicinal plants traditionally used in Croatian folk medicine. Nat Prod Commun 11:1934578X1601100634

    Google Scholar 

  109. Jeong YJ, An CH, Woo SG, Jeong HJ, Kim YM, Park SJ, Yoon BD, Kim CY (2014) Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli. Enzyme Microb Technol 54:8–14

    Article  CAS  PubMed  Google Scholar 

  110. El Khawand T, Courtois A, Valls J, Richard T, Krisa S (2018) A review of dietary stilbenes: sources and bioavailability. Phytochem Rev 17:1007–1029

    Article  Google Scholar 

  111. Riviere C, Pawlus AD, Merillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    Article  CAS  PubMed  Google Scholar 

  112. Anekonda TS, Reddy PH (2006) Neuronal protection by sirtuins in Alzheimer’s disease. J Neurochem 96:305–313

    Article  CAS  PubMed  Google Scholar 

  113. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  114. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Das DK, Delmas D, Gottfried C, Lin HY (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6:e19881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chang CL, Lin CS (2012) Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid Based Complement Alternat Med 2012:125247

    Article  PubMed  Google Scholar 

  117. Temsamani H, Krisa S, Mérillon JM, Richard T (2015) Promising neuroprotective effects of oligostilbenes. Nutr Aging 3:49–54

    Article  CAS  Google Scholar 

  118. Liu YM, Shen SN, Xia FB, Chang Q, Liu XM (2015) Neuroprotection of stilbenes from leaves of Cajanus cajan against oxidative damage induced by corticosterone and glutamate in differentiated PC12 Cells. Chin Herb Med 7:238–246

    CAS  Google Scholar 

  119. Cicero AF, Ruscica M, Banach M (2019) Resveratrol and cognitive decline: a clinician perspective. Arch Med Sci 15:936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Freyssin A, Page G, Fauconneau B, Bilan AR (2020) Natural stilbenes effects in animal models of Alzheimer’s disease. Neural Regen Res 15:843

    Article  PubMed  Google Scholar 

  121. Rivière C, Papastamoulis Y, Fortin PY, Delchier N, Andriamanarivo S, Waffo-Teguo P, Kapche GD, Amira-Guebalia H, Delaunay JC, Mérillon JM (2010) New stilbene dimers against amyloid fibril formation. Bioorg Med Chem Lett 20:3441–3443

    Article  PubMed  Google Scholar 

  122. Liu C, Zhang R, Sun C, Zhang H, Xu C, Liu W, Gao W, Huang S, Chen L (2015) Resveratrol prevents cadmium activation of Erk1/2 and JNK pathways from neuronal cell death via protein phosphatases 2A and 5. J Neurochem 135:466–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu Z, Yang J, Wei Y, Li J (2016) Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct 7:1014–1023

    Article  CAS  PubMed  Google Scholar 

  124. Jeong HY, Kim JY, Lee HK, Ha DT, Song KS, Bae K, Seong YH (2010) Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)-induced neurotoxicity. Arch Pharm Res 33:1655–1664

    Article  CAS  PubMed  Google Scholar 

  125. Hu J, Lin T, Gao Y, Xu J, Jiang C, Wang G, Bu G, Xu H, Chen H, Zhang YW (2015) The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation. PLoS ONE 10:e0115973

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071

    Article  CAS  PubMed  Google Scholar 

  127. Musa MA, Latinwo LM, Virgile C, Badisa VLD, Gbadebo AJ (2015) Synthesis and in vitro evaluation of 3-(4-nitrophenyl)coumarin derivatives in tumor cell lines. Bioorg Chem 58:96–103

    Article  CAS  PubMed  Google Scholar 

  128. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins—an important class of phytochemicals. In: Rao V, Rao L (eds) Phytochemicals-isolation, characterisation and role in human health, vol 25. IntechOpen, London, pp 533–538

    Google Scholar 

  129. Bronikowska J, Szliszka E, Jaworska D, Czuba ZP, Krol W (2012) The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 17:6449–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:963248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916

    Article  CAS  PubMed  Google Scholar 

  132. Lozhkin A, Sakanyan E (2006) Natural coumarins: methods of isolation and analysis. Pharm Chem J 40:337–346

    Article  CAS  Google Scholar 

  133. Borges MFM, Roleira FMF, Milhazes N, Villare E, Penin LS (2010) Simple coumarins: privileged scaffolds in medicinal chemistry. Front Med Chem 4:23–85

    Google Scholar 

  134. Lacy A, O’Kennedy R (2004) Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des 10:3797–3811

    Article  CAS  PubMed  Google Scholar 

  135. Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F (2021) Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev 2021:6492346

    Article  PubMed  PubMed Central  Google Scholar 

  136. Skalicka-Woźniak K, Orhan IE, Cordell GA, Nabavi SM, Budzyńska B (2016) Implication of coumarins towards central nervous system disorders. Pharmacol Res 103:188–203

    Article  PubMed  Google Scholar 

  137. Torres R, Faini F, Modak B, Urbina F, Labbé C, Guerrero J (2006) Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry 67:984–987

    Article  CAS  PubMed  Google Scholar 

  138. Kirsch G, Abdelwahab AB, Chaimbault P (2016) Natural and synthetic coumarins with effects on inflammation. Molecules 21:1322

    Article  PubMed  PubMed Central  Google Scholar 

  139. Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM (2020) Recent advancements of coumarin-based anticancer agents: an up-to-date review. Bioorg Chem 103:104163

    Article  CAS  PubMed  Google Scholar 

  140. Jameel E, Umar T, Kumar J, Hoda N (2016) Coumarin: a privileged scaffold for the design and development of antineurodegenerative agents. Chem Biol Drug Des 87:21–38

    Article  CAS  PubMed  Google Scholar 

  141. Pruccoli L (2019) Neuroprotective effects of coumarins in neurodegenerative disease models. Ph.D, Bollogna, Italy. https://doi.org/10.48676/unibo/amsdottorato/8975

  142. Huang M, Xie SS, Jiang N, Lan JS, Kong LY, Wang XB (2015) Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 25:508–513

    Article  CAS  PubMed  Google Scholar 

  143. Wang C, Pei A, Chen J, Yu H, Sun ML, Liu CF, Xu X (2012) A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. J Neurochem 121:1007–1013

    Article  CAS  PubMed  Google Scholar 

  144. Du G, Tu H, Li X, Pei A, Chen J, Miao Z, Li J, Wang C, Xie H, Xu X (2014) Daphnetin, a natural coumarin derivative, provides the neuroprotection against glutamate-induced toxicity in HT22 cells and ischemic brain injury. Neurochem Res 39:269–275

    Article  CAS  PubMed  Google Scholar 

  145. Epifano F, Pelucchini C, Curini M, Genovese S (2009) Insights on novel biologically active natural products: 7-isopentenyloxycoumarin. Nat Prod Commun 4:1934578X0900401228

    Google Scholar 

  146. Ji HJ, Hu JF, Wang YH, Chen XY, Zhou R, Chen NH (2010) Osthole improves chronic cerebral hypoperfusion induced cognitive deficits and neuronal damage in hippocampus. Eur J Pharmacol 636:96–101

    Article  CAS  PubMed  Google Scholar 

  147. He Y, Qu S, Wang J, He X, Lin W, Zhen H, Zhang X (2012) Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Res 1433:127–136

    Article  CAS  PubMed  Google Scholar 

  148. Farzaei MH, Shahpiri Z, Mehri MR, Bahramsoltani R, Rezaei M, Raeesdana A, Rahimi R (2018) Medicinal plants in neurodegenerative diseases: perspective of traditional Persian medicine. Curr Drug Metab 19:429–442

    Article  CAS  PubMed  Google Scholar 

  149. Ahn JY, Kim S, Jung SE, Ha TY (2010) Effect of licorice (Glycyrrhiza uralensis fisch) on amyloid-β-induced neurotoxicity in PC12 cells. Food Sci Biotechnol 19:1391–1395

    Article  Google Scholar 

  150. Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E (2014) Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res Pharm Sci 9:107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M (2003) Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 74:863–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 1328:152–161

    Article  CAS  PubMed  Google Scholar 

  153. Soheili Kashani M, Salami M, Talaei Zavareh SA, Hashemi M, Motaghi M, Rezaei Tavirani M (2011) Attenuating effects of aqueous extract of Lavandula angustifolia on Alzheimeric rat’s spatial learning. Med Sci J 20:221–227

    Google Scholar 

  154. Rahmati B, Kiasalari Z, Roghani M, Khalili M, Ansari F (2017) Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats. Pharm Biol 55:958–965

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dobros N, Zawada K, Paradowska K (2022) Phytochemical profile and antioxidant activity of Lavandula angustifolia and Lavandula x intermedia cultivars extracted with different methods. Antioxidants 11:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zali H, Zamanian-Azodi M, Rezaei Tavirani M, Akbar-Zadeh Baghban A (2015) Protein drug targets of Lavandula angustifolia on treatment of Rat Alzheimer’s Disease. Iran J Pharm Res 14:291–302

    PubMed  PubMed Central  Google Scholar 

  157. Nada SE, Tulsulkar J, Shah ZA (2014) Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after permanent ischemic stroke in mice. Mol Neurobiol 49:945–956

    Article  CAS  PubMed  Google Scholar 

  158. Ihl R, Tribanek M, Bachinskaya N (2012) Efficacy and tolerability of a once daily formulation of Ginkgo biloba extract EGb 761® in Alzheimer’s disease and vascular dementia: results from a randomised controlled trial. Pharmacopsychiatry 45:41–46

    Article  CAS  PubMed  Google Scholar 

  159. Chandrasekaran K, Mehrabian Z, Spinnewyn B, Drieu K, Fiskum G (2001) Neuroprotective effects of bilobalide, a component of the Ginkgo biloba extract (EGb 761), in gerbil global brain ischemia. Brain Res 922:282–292

    Article  CAS  PubMed  Google Scholar 

  160. Kumar S, Okello EJ, Harris JR (2012) Experimental inhibition of fibrillogenesis and neurotoxicity by amyloid-beta (Aβ) and other disease-related peptides/proteins by plant extracts and herbal compounds. Subcell Biochem 65:295–326

    Article  CAS  PubMed  Google Scholar 

  161. Sedaghat R, Roghani M, Khalili M (2014) Neuroprotective effect of thymoquinone, the Nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iran J Pharm Res 13:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Erşahin M, Toklu HZ, Akakin D, Yuksel M, Yeğen BÇ, Sener G (2011) The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage. Acta Neurochir 153:333–341

    Article  PubMed  Google Scholar 

  163. Herman F, Westfall S, Brathwaite J, Pasinetti GM (2018) Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols. Front Pharmacol 9:867

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ben Youssef S, Brisson G, Doucet-Beaupré H, Castonguay AM, Gora C, Amri M, Lévesque M (2021) Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci 24:197–211

    Article  CAS  PubMed  Google Scholar 

  165. Hayden EY, Yamin G, Beroukhim S, Chen B, Kibalchenko M, Jiang L, Ho L, Wang J, Pasinetti GM, Teplow DB (2015) Inhibiting amyloid β-protein assembly: size-activity relationships among grape seed-derived polyphenols. J Neurochem 135:416–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG (2022) Dietary plant polyphenols as the potential drugs in neurodegenerative diseases: current evidence, advances, and opportunities. Oxid Med Cell Longev 2022:5288698

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhang X, Yang Y, Du L, Zhang W, Du G (2017) Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int Immunopharmacol 50:38–47

    Article  CAS  PubMed  Google Scholar 

  168. Kuang L, Cao X, Lu Z (2017) Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy. Biol Pharm Bull 40:1537–1543

    Article  CAS  PubMed  Google Scholar 

  169. Yu L, Wu AG, Wong VK, Qu LQ, Zhang N, Qin DL, Zeng W, Tang B, Wang HM, Wang Q, Law BYK (2019) The new application of UHPLC-DAD-TOF/MS in identification of inhibitors on β-amyloid fibrillation from Scutellaria baicalensis. Front Pharmacol 10:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rho T, Choi MS, Jung M, Kil HW, Hong YD, Yoon KD (2019) Identification of fermented tea (Camellia sinensis) polyphenols and their inhibitory activities against amyloid-beta aggregation. Phytochemistry 160:11–18

    Article  CAS  PubMed  Google Scholar 

  171. Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, Yi Z, Tan EK (2019) The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson’s disease (PD). Cells 8:911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Arab H, Mahjoub S, Hajian-Tilaki K, Moghadasi M (2016) The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: a prospective intervention study. Caspian J Intern Med 7:188–194

    PubMed  PubMed Central  Google Scholar 

  173. Lim HJ, Shim SB, Jee SW, Lee SH, Lim CJ, Hong JT, Sheen YY, Hwang DY (2013) Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem 24:1302–1313

    Article  CAS  PubMed  Google Scholar 

  174. Del Prete D, Millán E, Pollastro F, Chianese G, Luciano P, Collado JA, Munoz E, Appendino G, Taglialatela-Scafati O (2016) Turmeric sesquiterpenoids: expeditious resolution, comparative bioactivity, and a new bicyclic turmeronoid. J Nat Prod 79:267–273

    Article  PubMed  Google Scholar 

  175. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:367–377 (discussion 443-9)

    Article  CAS  PubMed  Google Scholar 

  176. Baum L, Lam CWK, Cheung SKK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HFK, Goggins WB, Zee BCY, Cheng KF, Fong CYS, Wong A, Mok H, Chow MSS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CYL, Chan MH, Szeto S, Chan IHS, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    Article  PubMed  Google Scholar 

  177. Walia A, Kumar N, Singh R, Kumar H, Kumar V, Kaushik R, Kumar AP (2022) Bioactive compounds in Ficus fruits, their bioactivities, and associated health benefits: a review. J Food Qual 2022:6597092

    Article  Google Scholar 

  178. Subash S, Essa MM, Al-Asmi A, Al-Adawi S, Vaishnav R (2014) Chronic dietary supplementation of 4% figs on the modification of oxidative stress in Alzheimer’s disease transgenic mouse model. Biomed Res Int 2014:546357

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bukhari IA, Dar A (2013) Behavioral profile of Hypericum perforatum (St. John’s Wort) extract. A comparison with standard antidepressants in animal models of depression. Eur Rev Med Pharmacol Sci 17:1082–1089

    CAS  PubMed  Google Scholar 

  180. Eroglu Ozkan E, Yilmaz Ozden T, Ozsoy N, Mat A (2018) Evaluation of chemical composition, antioxidant and anti-acetylcholinesterase activities of Hypericum neurocalycinum and Hypericum malatyanum. S Afr J Bot 114:104–110

    Article  CAS  Google Scholar 

  181. Kiasalari Z, Baluchnejadmojarad T, Roghani M (2016) Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease. Cell Mol Neurobiol 36:521–530

    Article  CAS  PubMed  Google Scholar 

  182. Poulose SM, Miller MG, Scott T, Shukitt-Hale B (2017) Nutritional factors affecting adult neurogenesis and cognitive function. Adv Nutr 8:804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100:13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Taupin P (2008) Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci 5:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sung PS, Lin PY, Liu CH, Su HC, Tsai KJ (2020) Neuroinflammation and neurogenesis in Alzheimer’s disease and potential therapeutic approaches. Int J Mol Sci 21:701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moriya J, Chen R, Yamakawa J, Sasaki K, Ishigaki Y, Takahashi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34:354–359

    Article  CAS  PubMed  Google Scholar 

  187. Zheng T, Bielinski DF, Fisher DR, Zhang J, Shukitt-Hale B (2022) Protective effects of a polyphenol-rich blueberry extract on adult human neural progenitor cells. Molecules 27:6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mori T, Koyama N, Yokoo T, Segawa T, Maeda M, Sawmiller D, Tan J, Town T (2020) Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J Biol Chem 295:16251–16266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ, Yoon HG (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 55:1798–1808

    Article  CAS  PubMed  Google Scholar 

  190. Chandrasekhar Y, Phani Kumar G, Ramya E, Anilakumar K (2018) Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem Res 43:1150–1160

    Article  CAS  PubMed  Google Scholar 

  191. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, Bavarsad K (2013) Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav 111:90–96

    Article  CAS  PubMed  Google Scholar 

  192. Shan S, Tian L, Fang R (2019) Chlorogenic acid exerts beneficial effects in 6-hydroxydopamine-induced neurotoxicity by inhibition of endoplasmic reticulum stress. Med Sci Monit 25:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shi Z, Jiang W, Chen X, Xu M, Wang J, Lai Y, Zha D (2020) Chlorogenic acid ameliorated allergic rhinitis-related symptoms in mice by regulating Th17 cells. Biosci Rep 40:BSR20201643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gao L, Li X, Meng S, Ma T, Wan L, Xu S (2020) Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des Devel Ther 14:1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Augustin S, Rimbach G, Augustin K, Schliebs R, Wolffram S, Cermak R (2009) Effect of a short-and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer’s disease. Arch Biochem Biophys 481:177–182

    Article  CAS  PubMed  Google Scholar 

  196. Vijayakumaran S, Nakamura Y, Henley JM, Pountney DL (2019) Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 101:103416

    Article  CAS  PubMed  Google Scholar 

  197. Stark M, Behl C (2014) The Ginkgo biloba extract EGb 761 modulates proteasome activity and polyglutamine protein aggregation. Evid Based Complement Alternat Med 2014:940186

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yu MS, Leung SKY, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang RCC (2005) Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against β-amyloid peptide neurotoxicity. Exp Gerontol 40:716–727

    Article  PubMed  Google Scholar 

  199. Ho YS, Yu MS, Lai CSW, So KF, Yuen WH, Chang RCC (2007) Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on β-amyloid peptide neurotoxicity. Brain Res 1158:123–134

    Article  CAS  PubMed  Google Scholar 

  200. Mallik SB, Mudgal J, Nampoothiri M, Hall S, Anoopkumar-Dukie S, Grant G, Rao CM, Arora D (2016) Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci Lett 632:218–223

    Article  Google Scholar 

  201. Jha AB, Panchal SS, Shah A (2018) Ellagic acid: insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer’s disease. Pharmacol Biochem Behav 175:33–46

    Article  CAS  PubMed  Google Scholar 

  202. Farbood Y, Sarkaki A, Dolatshahi M, Mansouri SMT, Khodadadi A (2015) Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of Parkinson’s disease. Basic Clin Neurosci 6:83

    PubMed  PubMed Central  Google Scholar 

  203. Farbood Y, Sarkaki A, Dianat M, Khodadadi A, Haddad MK, Mashhadizadeh S (2015) Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci 124:120–127

    Article  CAS  PubMed  Google Scholar 

  204. Zhao Y, Dang M, Zhang W, Lei Y, Ramesh T, Veeraraghavan VP, Hou X (2020) Neuroprotective effects of Syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease. J Funct Foods 71:104009

    Article  CAS  Google Scholar 

  205. Zare K, Eidi A, Roghani M, Rohani AH (2015) The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30:205–211

    Article  CAS  PubMed  Google Scholar 

  206. Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, Han F (2015) Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 5:1–14

    Article  Google Scholar 

  207. Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S (2011) Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 89:939–945

    Article  PubMed  Google Scholar 

  208. Chakraborty J, Rajamma U, Jana N, Mohanakumar K (2015) Quercetin improves the activity of the ubiquitin-proteasomal system in 150Q mutated huntingtin-expressing cells but exerts detrimental effects on neuronal survivability. J Neurosci Res 93:1581–1591

    Article  CAS  PubMed  Google Scholar 

  209. Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 141:766–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ikram M, Muhammad T, Rehman SU, Khan A, Jo MG, Ali T, Kim MO (2019) Hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF-κB signaling in an Aβ mouse model. Mol Neurobiol 56:6293–6309

    Article  CAS  PubMed  Google Scholar 

  211. Poetini MR, Araujo SM, de Paula MT, Bortolotto VC, Meichtry LB, de Almeida FP, Jesse CR, Kunz SN, Prigol M (2018) Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem Biol Interact 279:177–186

    Article  CAS  PubMed  Google Scholar 

  212. Kumar P, Kumar A (2010) Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide. Behav Brain Res 206:38–46

    Article  CAS  PubMed  Google Scholar 

  213. Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM, Zlokovic BV (2018) Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener 13:1–13

    Article  Google Scholar 

  214. Hornedo-Ortega R, Alvarez-Fernandez MA, Cerezo AB, Richard T, Troncoso AMA, Garcia-Parrilla MAC (2016) Protocatechuic acid: inhibition of fibril formation, destabilization of preformed fibrils of amyloid-β and α-synuclein, and neuroprotection. J Agric Food Chem 64:7722–7732

    Article  CAS  PubMed  Google Scholar 

  215. Zhong X, Liu M, Yao W, Du K, He M, Jin X, Jiao L, Ma G, Wei B, Wei M (2019) Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res 63:1801230

    Article  CAS  Google Scholar 

  216. Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79

    Article  CAS  PubMed  Google Scholar 

  217. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18:9949–9965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Uddin MS, Kabir MT (2019) Emerging signal regulating potential of genistein against Alzheimer’s disease: a promising molecule of interest. Front Cell Dev Biol 7:197

    Article  PubMed  PubMed Central  Google Scholar 

  219. Arbabi E, Hamidi G, Talaei SA, Salami M (2016) Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran J Basic Med Sci 19:1285

    PubMed  PubMed Central  Google Scholar 

  220. Vepsäläinen S, Koivisto H, Pekkarinen E, Mäkinen P, Dobson G, McDougall GJ, Stewart D, Haapasalo A, Karjalainen RO, Tanila H (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 24:360–367

    Article  PubMed  Google Scholar 

  221. Hernandez-Montes E, Pollard SE, Vauzour D, Jofre-Montseny L, Rota C, Rimbach G, Weinberg PD, Spencer JP (2006) Activation of glutathione peroxidase via Nrf1 mediates genistein’s protection against oxidative endothelial cell injury. Biochem Biophys Res Commun 346:851–859

    Article  CAS  PubMed  Google Scholar 

  222. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  223. Singh DK, Jagannathan R, Khandelwal P, Abraham PM, Poddar P (2013) In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale 5:1882–1893

    Article  CAS  PubMed  Google Scholar 

  224. Verma M, Sharma A, Naidu S, Bhadra AK, Kukreti R, Taneja V (2012) Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS ONE 7:e42923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181

    Article  CAS  PubMed  Google Scholar 

  226. Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, Ohhashi Y, Ookoshi T, Ono K, Yamada M, Naiki H (2007) The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 46:1888–1899

    Article  CAS  PubMed  Google Scholar 

  227. Pasinetti GM, Wang J, Marambaud P, Ferruzzi M, Gregor P, Knable LA, Ho L (2011) Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol 232:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C (2019) Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol 56:1502–1516

    Article  CAS  PubMed  Google Scholar 

  229. Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL (2015) MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 74:252–256

    Article  CAS  PubMed  Google Scholar 

  230. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54:111–118

    Article  CAS  PubMed  Google Scholar 

  231. Cheng W, Yu P, Wang L, Shen C, Song X, Chen J, Tang F, Yang Q (2015) Sonic hedgehog signaling mediates resveratrol to increase proliferation of neural stem cells after oxygen-glucose deprivation/reoxygenation injury in vitro. Cell Physiol Biochem 35:2019–2032

    Article  CAS  PubMed  Google Scholar 

  232. Caillaud M, Guillard J, Richard D, Milin S, Chassaing D, Paccalin M, Page G, Rioux Bilan A (2019) Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model. PLoS ONE 14:e0212663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hassaan Y, Handoussa H, El-Khatib AH, Linscheid MW, El Sayed N, Ayoub N (2014) Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. Biomed Res Int 2014:843263

    Article  PubMed  PubMed Central  Google Scholar 

  234. Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G, Yang J, Wu C (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 54:92–102

    Article  CAS  PubMed  Google Scholar 

  235. Pruccoli L, Morroni F, Sita G, Hrelia P, Tarozzi A (2020) Esculetin as a bifunctional antioxidant prevents and counteracts the oxidative stress and neuronal death induced by amyloid protein in SH-SY5Y cells. Antioxidants 9:551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I, Biala G (2015) Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 232:931–942

    Article  CAS  PubMed  Google Scholar 

  237. Lee JH, Lee KT, Yang JH, Baek NI, Kim DK (2004) Acetylcholinesterase inhibitors from the twigs ofvaccinium oldhami miquel. Arch Pharm Res 27:53–56

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ASC and MT contributed to conceptualization. MT wrote the first draft. PH, MHM, and MdlLCG contributed to the review and editing of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Mansoureh Tavan or Antonio Segura Carretero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavan, M., Hanachi, P., de la Luz Cádiz-Gurrea, M. et al. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 49, 306–326 (2024). https://doi.org/10.1007/s11064-023-04046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04046-z

Keywords

Navigation