Skip to main content

Advertisement

Log in

Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

AD:

Alzheimer’s disease

ADSC:

Adipose derived stem cell

BBB:

Basso, Beattie, Bresnahan locomotor rating scale

BDNF:

Brain-derived growth factor

BMSC:

Bone marrow derived stem cell

CM:

Conditioned medium

CNS:

Central nervous system

CNTF:

Ciliary-derived neurotrophic factor

CST:

Corticospinal tract

CXCR:

Chemokine (C-X-C motif) receptor

DFSC:

Dental follicle stem cell

DMSO:

Dimethyl sulfoxide

DPSC:

Dental pulp stem cell

DSC:

Dental stem cell

EGF:

Epidermal growth factor

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

FGF2 :

Basic fibroblast growth factor

GABA:

Gamma-aminobutyric acid

GDNF:

Glial-derived neurotrophic factor

GF:

Growth factor

GFAP:

Glial fibrillary acidic protein

GMSC:

Gingiva-derived mesenchymal stem cell

HGF:

Hepatocyte growth factor

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon gamma

IGF-I:

Insulin-like growth factor I

IL:

Interleukin

iPSC:

Induced pluripotent stem cell

LPS:

Lipopolysaccharide

mRNA:

Messenger ribonucleic acid

MSC:

Mesenchymal stem cell

NC:

Neural crest

NF:

Neurotrophic factor

NSC:

Neural stem cell

NT:

Neurotrophin

NT3:

Neurotrophin 3

NT4/5:

Neurotrophin 4/5

NGF:

Nerve growth factor

OEC:

Olfactory ensheathing cell

OMSC:

Oral mucosa stem cell

OPC:

Oligodendrocyte progenitor cell

p75NTR :

p75 neurotrophin receptor

PD:

Parkinson’s disease

PBMC:

Peripheral blood mononuclear cell

PDGF:

Platelet derived growth factor

PDLSC:

Periodontal ligament stem cell

PNS:

Peripheral nervous system

RGC:

Retinal ganglion cell

ROS:

Reactive oxygen species

SC:

Schwann cell

SCAP:

Stem cells from the apical papilla

SCI:

Spinal cord injury

SDF-1:

Chemokine stromal cell-derived factor 1 (CXCL12)

SHED:

Stem cells from human exfoliated deciduous teeth

TGF:

Transforming growth factor

TGPC:

Tooth germ progenitor cell

Th17:

Myelin-reactive IL-17 T helper cell

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

Trk:

Tropomyosin receptor kinase

VEGF:

Vascular endothelial growth factor

References

  1. Furlan J, Sakakibara B, Miller W, Krassioukov A (2013) Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci 40(4):456–464

    Article  PubMed  Google Scholar 

  2. Lee B, Cripps R, Fitzharris M, Wing P (2014) The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 52(2):110–116

    Article  CAS  PubMed  Google Scholar 

  3. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings M (2014) Global prevalence and incidence of traumatic spinal cord injury. Clinical Epidemiology 6:309–331

    PubMed  PubMed Central  Google Scholar 

  4. Jensen M, Kuehn C, Amtmann D, Cardenas D (2007) Symptom burden in persons with spinal cord injury. Arch Phys Med Rehabil 88(5):638–645

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thomas C, Bakels R, Klein C, Zijdewind I (2014) Human spinal cord injury: motor unit properties and behaviour. Acta Physiol 210(1):5–19

    Article  CAS  Google Scholar 

  6. Krishna V, Andrews H, Varma A, Mintzer J, Kindy M, Guest J (2014) Spinal cord injury: how can we improve the classification and quantification of its severity and prognosis. J Neurotrauma 31(3):215–227

    Article  PubMed  PubMed Central  Google Scholar 

  7. David S, Aquayo A (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523):931–933

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Raisman G (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 14(7):4050–4063

    CAS  PubMed  Google Scholar 

  9. Kanno H, Pressman Y, Moody A, Berg R, Muir E, Rogers J, Ozawa H, Itoi E, Pearse D, Bunge M (2014) Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci 34(5):1838–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tetzlaff W, Okon E, Karimi-Abdolrezaee S, Hill C, Sparling J, Plemel J, Plunet W, Tsai E, Baptiste D, Smithson L, Kawaja M, Fehlings M, Kwon B (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28(8):1611–1682

    Article  PubMed  PubMed Central  Google Scholar 

  11. Imaizumi T, Lankford K, Kocsis J, Sasaki M, Akiyama Y, Hashi K (2000) Comparison of myelin-forming cells as candidates for therapeutic transplantation in demyelinated CNS axons. Nō To Shinkei 52(7):609–615

    CAS  PubMed  Google Scholar 

  12. Golden K, Pearse D, Blits B, Garg M, Oudega M, Wood P, Bunge M (2007) Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207(2):203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Field P, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277(5334):2000–2002

    Article  CAS  PubMed  Google Scholar 

  14. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan G, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4(7):814–821

    Article  CAS  PubMed  Google Scholar 

  15. Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen I, Schwartz M (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355(9200):286–287

    Article  CAS  PubMed  Google Scholar 

  16. Rao Y, Zhu W, Du Z, Jia C, Du T, Zhao Q, Cao X, Wang Y (2014) Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res 13(2):4124–4129

    Article  CAS  PubMed  Google Scholar 

  17. Iwatsuki K, Yoshimine T, Kishima H, Aoki M, Yoshimura K, Ishihara M, Ohnishi Y, Lima C (2008) Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats. NeuroReport 19(13):1249–1252

    Article  PubMed  Google Scholar 

  18. Liu J, Chen P, Wang Q, Chen Y, Yu H, Ma J, Guo M, Piao M, Ren W, Xiang L (2014) Meta analysis of olfactory ensheathing cell transplantation promoting functional recovery of motor nerves in rats with complete spinal cord transection. Neural Regen Res 9(20):1850–1858

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramón-Cueto A, Cordero M, Santos-Benito F, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25(2):425–435

    Article  PubMed  Google Scholar 

  20. Bregman B, Kunkel-Bagden E, Schnell L, Dai H, Gao D, Schwab M (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378(6556):498–501

    Article  CAS  PubMed  Google Scholar 

  21. Bradbury E, Moon L, Popat R, King V, Bennett G, Patel P, Fawcett J, McMahon S (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  CAS  PubMed  Google Scholar 

  22. Yu P, Huang L, Zou J, Yu Z, Wang Y, Wang X, Xu L, Liu X, Xu X, Lu P (2008) Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis 32(3):535–542

    Article  CAS  PubMed  Google Scholar 

  23. Zhai P, Chen X, Schreyer D (2015) An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth. Biomed Mater 10(4):045016

    Article  PubMed  CAS  Google Scholar 

  24. Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M (2001) Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci 98(26):15173–15178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bregman B, McAtee M, Dai H, Kuhn P (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148(2):475–494

    Article  CAS  PubMed  Google Scholar 

  26. Elliott Donaghue I, Tator C, Shoichet M (2015) Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci 3(1):65–72

    Article  CAS  PubMed  Google Scholar 

  27. Rabchevsky A, Fugaccia I, Turner A, Blades D, Mattson M, Scheff S (2000) Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 164(2):280–291

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, Xie E, Liu C, Zhang R, Wang Y, Huang L, Hao D (2015) Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep 5:9017

    Article  PubMed  CAS  Google Scholar 

  29. Dolbow D, Gorgey A, Recio A, Stiens S, Curry A, Sadowsky C, Gater D, Martin R, McDonald J (2015) Activity-based restorative therapies after spinal cord injury: inter-institutional conceptions and perceptions. Aging Dis 6(4):254–261

    Article  PubMed  PubMed Central  Google Scholar 

  30. Edgerton V, Harkema S (2011) Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother 11(10):1351–1353

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lu P, Tuszynski M (2008) Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol 209(2):313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273(5274):510–513

    Article  CAS  PubMed  Google Scholar 

  33. Tsai E, Krassioukov A, Tator C (2005) Corticospinal regeneration into lumbar grey matter correlates with locomotor recovery after complete spinal cord transection and repair with peripheral nerve grafts, fibroblast growth factor 1, fibrin glue, and spinal fusion. J Neuropathol Exp Neurol 64(3):230–244

    Article  PubMed  Google Scholar 

  34. Nash H, Borke R, Anders J (2002) Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 22(16):7111–7120

    CAS  PubMed  Google Scholar 

  35. Kubasak M, Jindrich D, Zhong H, Takeoka A, McFarland K, Muñoz-Quiles C, Roy R, Edgerton V, Ramón-Cueto A, Phelps P (2008) OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain 131(Part 1):264–276

    PubMed  PubMed Central  Google Scholar 

  36. Wang L, Zhang R, Li J (2014) Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien) 156(7):1409–1418

    Article  Google Scholar 

  37. Godinho M, Teh L, Pollett M, Goodman D, Hodgetts S, Sweetman I, Walters M, Verhaagen J, Plant G, Harvey A (2013) Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One 8(8):e69987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Assunção-Silva R, Gomes E, Sousa N, Silva N, Salgado A (2015) Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015:948040

    Article  PubMed  PubMed Central  Google Scholar 

  39. Germain L, De Berdt P, Vanacker J, Leprince J, Diogenes A, Jacobs D, Vandermeulen G, Bouzin C, Préat V, Dupont-Gillain C, des Rieux A (2015) Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine. Regen Med 10(2):153–167

    Article  CAS  PubMed  Google Scholar 

  40. Tsintou M, Dalamagkas K, Seifalian A (2015) Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 10(5):726–742

    Article  PubMed  PubMed Central  Google Scholar 

  41. Phinney D, Prockop D (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  42. Liu S, Qu Y, Stewart T, Howard M, Chakrabortty S, Holekamp T, McDonald J (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci 97(11):6126–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao Q, Benton R, Whittemore S (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68(5):501–510

    Article  CAS  PubMed  Google Scholar 

  44. Oh J, Lee K-I, Kim H-T, You Y, Yoon D, Song K, Cheong E, Ha Y (2015) Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury. Stem Cell Res Ther 6(1):125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lee-Kubli C, Lu P (2015) Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury. Neural Regen Res 10(1):10–16

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, Latter J, Ornelas L, Garcia L, Svendsen C (2014) Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol 522(12):2707–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman S (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  49. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  50. Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, Martino G, Baron-Van Evercooren A (2015) Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Investig 125(9):3642–3656

    Article  PubMed  PubMed Central  Google Scholar 

  51. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis J (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167(1):27–39

    Article  CAS  PubMed  Google Scholar 

  52. Mothe A, Tator C (2008) Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 213(1):176–190

    Article  CAS  PubMed  Google Scholar 

  53. Himes B, Liu Y, Solowska J, Snyder E, Fischer I, Tessler A (2001) Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res 65(6):549–564

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Himes B, Solowska J, Moul J, Chow S, Park K, Tessler A, Murray M, Snyder E, Fischer I (1999) Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol 158(1):9–26

    Article  CAS  PubMed  Google Scholar 

  55. Syková E, Homola A, Mazanec R, Lachmann H, Konrádová S, Kobylka P, Pádr R, Neuwirth J, Komrska V, Vávra V, Stulík J, Bojar M (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687

    Article  PubMed  Google Scholar 

  56. Mannoji C, Koda M, Kamiya K, Dezawa M, Hashimoto M, Furuya T, Okawa A, Takahashi K, Yamazaki M (2014) Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp 74(4):479–488

    Google Scholar 

  57. Akiyama Y, Radtke C, Honmou O, Kocsis J (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39(3):229–236

    Article  PubMed  PubMed Central  Google Scholar 

  58. da Silva Meirelles L, Chagastelles P, Nardi N (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(11):2204–2213

    Article  CAS  Google Scholar 

  59. Kang S, Shin M, Jung J, Kim Y, Kim C (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15(4):583–594

    Article  CAS  PubMed  Google Scholar 

  60. Dong Y, Yang L, Yang L, Zhao H, Zhang C, Wu D (2014) Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury. Neural Regen Res 9(16):1520–1524

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shi S, Robey P, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532–539

    Article  CAS  PubMed  Google Scholar 

  62. Arthur A, Shi S, Zannettino A, Fujii N, Gronthos S, Koblar S (2009) Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 27(9):2229–2237

    Article  CAS  PubMed  Google Scholar 

  63. de Almeida F, Marques S, Ramalho Bdos S, Rodrigues R, Cadilhe D, Furtado D, Kerkis I, Pereira L, Rehen S, Martinez A (2011) Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma 28(9):1939–1949

    Article  PubMed  Google Scholar 

  64. Pomerat C, Contino R (1965) The cultivation of dental tissues. Oral Surg Med Oral Pathol 19(5):628–632

    Article  CAS  Google Scholar 

  65. Gronthos S, Mankani M, Brahim J, Robey P, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97(25):13625–13630. doi:10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miura M, Gronthos S, Zhao M, Lu B, Fisher L, Robey P, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seo B, Miura M, Gronthos S, Bartold P, Batouli S, Brahim J, Young M, Robey P, Wang C, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    Article  CAS  PubMed  Google Scholar 

  68. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  69. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B, Zhang C, Liu H, Gronthos S, Wang C, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go M, Adachi H, Yokota Y, Kirita T, Ohgushi H (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76(5):495–505

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le A (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen M, Pitaru S (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28(5):984–995

    CAS  PubMed  Google Scholar 

  73. Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu G, Liang A, Liu S (2015) Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33(3):627–638

    Article  CAS  PubMed  Google Scholar 

  74. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  75. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry—Part I: stem cell sources. J Prosthodont Res 56(3):151–165

    Article  PubMed  Google Scholar 

  76. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35(11):1536–1542

    Article  PubMed  Google Scholar 

  77. Sonoyama W, Liu Y, Yamaza T, Tuan R, Wang S, Shi S, Huang G (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang G, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34(6):645–651

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang X, Sha X, Li G, Yang F, Ji K, Wen L, Liu S, Chen L, Ding Y, Xuan K (2012) Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 57(9):1231–1240

    Article  CAS  PubMed  Google Scholar 

  80. Yang H, Gao L, An Y, Hu C, Jin F, Zhou J, Jin Y, Chen F (2013) Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 34(29):7033–7047

    Article  CAS  PubMed  Google Scholar 

  81. Tomar G, Srivastava R, Gupta N, Barhanpurkar A, Pote S, Jhaveri H, Mishra G, Wani M (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 393(3):377–383

    Article  CAS  PubMed  Google Scholar 

  82. Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 366(1):83–95

    Article  CAS  PubMed  Google Scholar 

  83. Mayor R, Theveneau E (2013) The neural crest. Development 140(11):2247–2251

    Article  CAS  PubMed  Google Scholar 

  84. Jessen K, Mirsky R, Lloyd A (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7(7):a020487

    Article  PubMed  Google Scholar 

  85. Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I (2007) Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 357(4):917–923

    Article  CAS  PubMed  Google Scholar 

  86. Kaltschmidt B, Kaltschmidt C, Widera D (2012) Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev Rep 8(3):658–671

    Article  Google Scholar 

  87. Janebodin K, Horst O, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M (2011) Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One 6(11):e27526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Achilleos A, Trainor P (2012) Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 22(2):288–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kaukua N, Shahidi M, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes N, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513(7519):551–554

    Article  CAS  PubMed  Google Scholar 

  90. Yamauchi J, Chan J, Shooter E (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci 100(24):14421–14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd J, Tohyama M, Hosokawa K (2007) The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia 55(11):1199–1208

    Article  PubMed  Google Scholar 

  92. Waddington R, Youde S, Lee C, Sloan A (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274

    Article  PubMed  Google Scholar 

  93. Abe S, Hamada K, Miura M, Yamaguchi S (2012) Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biol Int 36(10):927–936

    Article  PubMed  Google Scholar 

  94. Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196(6):490–500

    Article  CAS  PubMed  Google Scholar 

  95. Huang E, Reichardt L (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meeker R, Williams K (2015) The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 10(5):721–725

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chu G, Yu W, Fehlings M (2007) The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience 148(3):668–682

    Article  CAS  PubMed  Google Scholar 

  98. Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik S, Lilly B, Burch J, Firulli A, Conway S (2007) Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol 307(2):340–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y (2015) Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodont Res 50(6):855–863

    Article  CAS  PubMed  Google Scholar 

  100. Wiesen R, Padial-Molina M, Volk S, McDonald N, Chiego D Jr, Botero T, Rios H (2015) The expression of periostin in dental pulp cells. Arch Oral Biol 60(5):760–767

    Article  CAS  PubMed  Google Scholar 

  101. Sonnenberg-Riethmacher E, Miehe M, Riethmacher D (2015) Promotion of periostin expression contributes to the migration of Schwann cells. J Cell Sci 128(17):3345–3355

    Article  PubMed  Google Scholar 

  102. Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28(4):1634–1643

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hammarberg H, Piehl F, Cullheim S, Fjell J, Hökfelt T, Fried K (1996) GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7(4):857–860

    Article  CAS  PubMed  Google Scholar 

  104. Bär K, Saldanha G, Kennedy A, Facer P, Birch R, Carlstedt T, Anand P (1998) GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport 9(1):43–47

    Article  PubMed  Google Scholar 

  105. Höke A, Cheng C, Zochodne D (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11(8):1651–1654

    Article  PubMed  Google Scholar 

  106. Tannemaat M, Eggers R, Hendriks W, de Ruiter G, van Heerikhuize J, Pool C, Malessy M, Boer G, Verhaagen J (2008) Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 28(8):1467–1479

    Article  PubMed  Google Scholar 

  107. Piquilloud G, Christen T, Pfister L, Gander B, Papaloïzos M (2007) Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 26(5):1109–1117

    Article  PubMed  Google Scholar 

  108. Fernández Vallone V, Romaniuk M, Choi H, Labovsky V, Otaegui J, Chasseing N (2013) Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 85(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  109. Ganz J, Arie I, Ben-Zur T, Dadon-Nachum M, Pour S, Araidy S, Pitaru S, Offen D (2014) Astrocyte-like cells derived from human oral mucosa stem cells provide neuroprotection in vitro and in vivo. Stem Cells Transl Med 3(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ganz J, Arie I, Buch S, Zur T, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D (2014) Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS One 9(6):e100445

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17(7):932–939

    Article  PubMed  CAS  Google Scholar 

  112. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H (2008) Tubulation with dental pulp cells promotes facial nerve regeneration in rats. Tissue Eng Part A 14(7):1141–1147

    Article  CAS  PubMed  Google Scholar 

  113. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T (2011) PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 5(10):823–830

    Article  CAS  PubMed  Google Scholar 

  114. Sasaki R, Matsumine H, Watanabe Y, Takeuchi Y, Yamato M, Okano T, Miyata M, Ando T (2014) Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats. Plast Reconstr Surg 134(5):970–978

    Article  CAS  PubMed  Google Scholar 

  115. Tseng L, Chen S, Lin M, Lin Y (2015) Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant 24(5):921–937

    Article  PubMed  Google Scholar 

  116. Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M (2011) Dental pulp-derived CD31/CD146 side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 17(9–10):1303–1311

    Article  CAS  PubMed  Google Scholar 

  117. Sugiyama M, Hattori H, Inoue T, Wakita H, Hibi H, Ueda M (2014) Stem cells from human exfoliated deciduous teeth enhance recovery from focal cerebral ischemia in rats. J Oral Maxillofac Surg Med Pathol 26(4):443–449

    Article  Google Scholar 

  118. Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M (2013) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 19(1–2):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26(9):2408–2418

    Article  PubMed  Google Scholar 

  120. Mead B, Logan A, Berry M, Leadbeater W, Scheven B (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Investig Ophthamol Vis Sci 54(12):7544–7556

    Article  CAS  Google Scholar 

  121. Mead B, Logan A, Berry M, Leadbeater W, Scheven B (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9(10):e109305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Casagrande L, Cordeiro M, Nör S, Nör J (2011) Dental pulp stem cells in regenerative dentistry. Odontology 99(1):1–7

    Article  PubMed  Google Scholar 

  123. Gandia C, Armiñan A, García-Verdugo J, Lledó E, Ruiz A, Miñana M, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero J, Sepúlveda P (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638–645

    Article  PubMed  Google Scholar 

  124. Govindasamy V, Ronald V, Abdullah A, Nathan K, Ab Aziz Z, Abdullah M, Musa S, Kasim N, Bhonde R (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90(5):646–652

    Article  CAS  PubMed  Google Scholar 

  125. Kerkis I, Ambrosio C, Kerkis A, Martins D, Zucconi E, Fonseca S, Cabral R, Maranduba C, Gaiad T, Morini A, Vieira N, Brolio M, Sant’Anna O, Miglino M, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med 6:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yang R, Chen M, Lee C, Yoon R, Lal S, Mao J (2010) Clones of ectopic stem cells in the regeneration of muscle defects in vivo. PLoS One 5(10):e13547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Monteiro B, Serafim R, Melo G, Silva M, Lizier N, Maranduba C, Smith R, Kerkis A, Cerruti H, Gomes J, Kerkis I (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42(5):587–594

    Article  CAS  PubMed  Google Scholar 

  128. Tropepe V, Sibilia M, Ciruna B, Rossant J, Wagner E, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208(1):166–188

    Article  CAS  PubMed  Google Scholar 

  129. Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  130. Coutu D, Galipeau J (2011) Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging 3(10):920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Salehinejad P, Alitheen N, Mandegary A, Nematollahi-Mahani S, Janzamin E (2013) Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. Vitro Cell Dev Biol Anim 49(7):515–523

    Article  CAS  Google Scholar 

  132. Bressan R, Melo F, Almeida P, Bittencourt D, Visoni S, Jeremias T, Costa A, Leal R, Trentin A (2014) EGF-FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs). Exp Cell Res 327(1):37–47

    Article  CAS  PubMed  Google Scholar 

  133. Schwindt T, Motta F, Gabriela F, Cristina G, Guimarães A, Calcagnotto M, Pesquero J, Mello L (2009) Effects of FGF-2 and EGF removal on the differentiation of mouse neural precursor cells. Ann Braz Acad Sci 81(3):443–452

    Article  CAS  Google Scholar 

  134. Kelly C, Tyers P, Borg M, Svendsen C, Dunnett S, Rosser A (2005) EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Res Bull 68(1–2):83–94

    Article  CAS  PubMed  Google Scholar 

  135. Xian C, Zhou X (2004) EGF family of growth factors: essential roles and functional redundancy in the nerve system. Front Biosci 9(1):85–92

    Article  CAS  PubMed  Google Scholar 

  136. Represa A, Shimazaki T, Simmonds M, Weiss S (2001) EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord. Eur J Neurosci 14(3):452–462

    Article  CAS  PubMed  Google Scholar 

  137. Hugnot J (2013) Isolate and culture neural stem cells from the mouse adult spinal cord. In: Reynolds B, Deleyrolle L (eds) Neural progenitor cells: methods and protocols, vol 1059., Methods in molecular biologySpringer, New York, pp 53–63

    Chapter  Google Scholar 

  138. Bauchet L, Lonjon N, Vachiery-Lahaye F, Boularan A, Privat A, Hugnot J (2013) Isolation and culture of precursor cells from the adult human spinal cord. In: Reynolds B, Deleyrolle L (eds) Neural progenitor cells: methods and protocols, vol 1059., Methods in molecular biologySpringer, New York, pp 87–93

    Chapter  Google Scholar 

  139. Trubiani O, Zalzal S, Paganelli R, Marchisio M, Giancola R, Pizzicannella J, Bühring H, Piattelli M, Caputi S, Nanci A (2010) Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol 225(1):123–131

    Article  CAS  PubMed  Google Scholar 

  140. Paschalidis T, Bakopoulou A, Papa P, Leyhausen G, Geurtsen W, Koidis P (2014) Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dent Mater 30(12):e405–e418

    Article  CAS  PubMed  Google Scholar 

  141. Demircan P, Sariboyaci A, Unal Z, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205–1220

    Article  CAS  PubMed  Google Scholar 

  142. Hamanoue M, Takemoto N, Matsumoto K, Nakamura T, Nakajima K, Kohsaka S (1996) Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J Neurosci Res 43(5):554–564

    Article  CAS  PubMed  Google Scholar 

  143. Ebens A, Brose K, Leonardo E, Hanson M, Bladt F, Birchmeier C, Barres B, Tessier-Lavigne M (1996) Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17(6):1157–1172

    Article  CAS  PubMed  Google Scholar 

  144. Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin R, Nakamura T, Toyama Y, Okano H (2007) Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res 85(11):2332–2342

    Article  CAS  PubMed  Google Scholar 

  145. Jeong S, Kwon M, Lee H, Joe E, Lee J, Kim S, Suh-Kim H, Kim B (2012) Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233(1):312–322

    Article  CAS  PubMed  Google Scholar 

  146. Zhang Z, Guth L (1997) Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Exp Neurol 147(1):159–171

    Article  CAS  PubMed  Google Scholar 

  147. Casella G, Marcillo A, Bunge M, Wood P (2002) New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol 173(1):63–76

    Article  PubMed  Google Scholar 

  148. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    CAS  PubMed  Google Scholar 

  149. Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77(7):527–543

    Article  CAS  PubMed  Google Scholar 

  150. Strojny C, Boyle M, Bartholomew A, Sundivakkam P, Alapati S (2015) Interferon gamma-treated dental pulp stem cells promote human mesenchymal stem cell migration in vitro. J Endod 41(8):1259–1264

    Article  PubMed  Google Scholar 

  151. Jin K, Zhu Y, Sun Y, Mao X, Xie L, Greenberg D (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci 99(18):11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Krum J, Mani N, Rosenstein J (2002) Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110(4):589–604

    Article  CAS  PubMed  Google Scholar 

  153. Krum J, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181(2):241–257

    Article  CAS  PubMed  Google Scholar 

  154. des Rieux A, De Berdt P, Ansorena E, Ucakar B, Damien J, Schakman O, Audouard E, Bouzin C, Auhl D, Simón-Yarza T, Feron O, Blanco-Prieto M, Carmeliet P, Bailly C, Clotman F, Préat V (2014) Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord. J Biomed Mater Res Part A 102(7):2345–2355

    Article  CAS  Google Scholar 

  155. Pelletier J, Roudier E, Abraham P, Fromy B, Saumet J, Birot O, Sigaudo-Roussel D (2015) VEGF-A promotes both pro-angiogenic and neurotrophic capacities for nerve recovery after compressive neuropathy in rats. Mol Neurobiol 51(1):240–251

    Article  CAS  PubMed  Google Scholar 

  156. Jiang L, Zhu Y, Du R, Gu Y, Xia L, Qin F, Ritchie H (2008) The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod 34(8):939–944

    Article  PubMed  PubMed Central  Google Scholar 

  157. Imitola J, Raddassi K, Park K, Mueller F, Nieto M, Teng Y, Frenkel D, Li J, Sidman R, Walsh C, Snyder E, Khoury S (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci 101(52):18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim S, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426(2):69–74

    Article  CAS  PubMed  Google Scholar 

  159. Carbajal K, Schaumburg C, Strieter R, Kane J, Lane T (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci 107(24):11068–11073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Akazawa Y, Hasegawa T, Yoshimura Y, Chosa N, Asakawa T, Ueda K, Sugimoto A, Kitamura T, Nakagawa H, Ishisaki A, Iwamoto T (2015) Recruitment of mesenchymal stem cells by stromal cell-derived factor 1α in pulp cells from deciduous teeth. Int J Mol Med 36(2):442–448

    CAS  PubMed  Google Scholar 

  161. Jaerve A, Bosse F, Müller H (2012) SDF-1/CXCL12: its role in spinal cord injury. Int J Biochem Cell Biol 44(3):452–456

    Article  CAS  PubMed  Google Scholar 

  162. Opatz J, Küry P, Schiwy N, Järve A, Estrada V, Brazda N, Bosse F, Müller H (2009) SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci 40(2):293–300

    Article  CAS  PubMed  Google Scholar 

  163. Dziembowska M, Tham T, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50(3):258–269

    Article  CAS  PubMed  Google Scholar 

  164. Carbajal K, Miranda J, Tsukamoto M, Lane T (2011) CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia 59(12):1813–1821

    Article  PubMed  Google Scholar 

  165. Göttle P, Kremer D, Jander S, Odemis V, Engele J, Hartung H, Küry P (2010) Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol 68(6):915–924

    Article  PubMed  CAS  Google Scholar 

  166. Balabanian K, Lagane B, Infantino S, Chow K, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280(42):35760–35766

    Article  CAS  PubMed  Google Scholar 

  167. Williams J, Patel J, Daniels B, Klein R (2014) Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. J Exp Med 211(5):791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shyu W, Lin S, Yen P, Su C, Chen D, Wang H, Li H (2008) Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther 324(2):834–849

    Article  CAS  PubMed  Google Scholar 

  169. Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13(1):62–76

    Article  CAS  PubMed  Google Scholar 

  170. Calver A, Hall A, Yu W, Walsh F, Heath J, Betsholtz C, Richardson W (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20(5):869–882

    Article  CAS  PubMed  Google Scholar 

  171. Hu J, Fu S, Wang Y, Li Y, Jiang X, Wang X, Qiu M, Lu P, Xu X (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151(1):138–147

    Article  CAS  PubMed  Google Scholar 

  172. Armstrong R, Harvath L, Dubois-Dalcq M (1990) Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res 27(3):400–407

    Article  CAS  PubMed  Google Scholar 

  173. Woodruff R, Fruttiger M, Richardson W, Franklin R (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25(2):252–262

    Article  CAS  PubMed  Google Scholar 

  174. Derringer K, Linden R (2004) Vascular endothelial growth factor, fibroblast growth factor 2, platelet derived growth factor and transforming growth factor beta released in human dental pulp following orthodontic force. Arch Oral Biol 49(8):631–641

    Article  CAS  PubMed  Google Scholar 

  175. Tran-Hung L, Laurent P, Camps J, About I (2008) Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 53(1):9–13

    Article  CAS  PubMed  Google Scholar 

  176. Vora P, Pillai P, Mustapha J, Kowal C, Shaffer S, Bose R, Namaka M, Frost E (2012) CXCL1 regulation of oligodendrocyte progenitor cell migration is independent of calcium signaling. Exp Neurol 236(2):259–267

    Article  CAS  PubMed  Google Scholar 

  177. Vora P, Pillai P, Zhu W, Mustapha J, Namaka M, Frost E (2011) Differential effects of growth factors on oligodendrocyte progenitor migration. Eur J Cell Biol 90(8):649–656

    Article  CAS  PubMed  Google Scholar 

  178. Murtie J, Zhou Y-X, Le T, Vana A, Armstrong R (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19:171–182

    Article  CAS  PubMed  Google Scholar 

  179. Redwine J, Blinder K, Armstrong R (1997) In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res 50(2):229–237

    Article  CAS  PubMed  Google Scholar 

  180. Bloom F (1996) Neurotransmission and the central nervous system. In: Hardman J, Limbird L, Molinoff P, Ruddon R, Gilman A (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 267–294

    Google Scholar 

  181. Boyd J, Gordon T (2003) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27(3):277–324

    Article  CAS  PubMed  Google Scholar 

  182. Glass D, Yancopolous G (1993) The neurotrophins and their receptors. Trends Cell Biol 3(8):262–268

    Article  CAS  PubMed  Google Scholar 

  183. Harvey A, Lovett S, Majda B, Yoon J, Wheeler L, Hodgetts S (2015) Neurotrophic factors for spinal cord repair: which, where, how and when to apply, and for what period of time? Brain Res 1619:36–71

    Article  CAS  PubMed  Google Scholar 

  184. Pellitteri R, Russo A, Stanzani S (2006) Schwann cell: a source of neurotrophic activity on cortical glutamatergic neurons in culture. Brain Res 1069(1):139–144

    Article  CAS  PubMed  Google Scholar 

  185. Frostick S, Yin Q, Kemp G (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18(7):397–405

    Article  CAS  PubMed  Google Scholar 

  186. Bianco J, Perry C, Harkin D, Mackay-Sim A, Féron F (2004) Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose. Glia 45(2):111–123

    Article  PubMed  Google Scholar 

  187. Lipson A, Widenfalk J, Lindqvist E, Ebendal T, Olson L (2003) Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 180(2):167–171

    Article  PubMed  Google Scholar 

  188. Woodhall E, West A, Chuah M (2001) Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res 88(1–2):203–213

    Article  CAS  PubMed  Google Scholar 

  189. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72(2):111–127

    Article  CAS  PubMed  Google Scholar 

  190. Nosrat C, Fried K, Ebendal T, Olson L (1998) NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur J Oral Sci 106(S1):94–99

    Article  CAS  PubMed  Google Scholar 

  191. Luukko K (1998) Neuronal cells and neurotrophins in odontogenesis. Eur J Oral Sci 106(S1):80–93

    Article  CAS  PubMed  Google Scholar 

  192. Nosrat I, Widenfalk J, Olson L, Nosrat C (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120–132

    Article  CAS  PubMed  Google Scholar 

  193. Baloh R, Enomoto H, Johnson E, Milbrandt J (2000) The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol 10(1):103–110

    Article  CAS  PubMed  Google Scholar 

  194. Nosrat I, Seiger A, Olson L, Nosrat C (2002) Expression patterns of neurotrophic factor mRNAs in developing human teeth. Cell Tissue Res 310(2):177–187

    Article  CAS  PubMed  Google Scholar 

  195. de Almeida J, Chen P, Henry M, Diogenes A (2014) Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng Part A 20(23–24):3089–3100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A (2014) Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 6(1):21–26

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Linker R, Gold R, Luhder F (2009) Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 29(1):43–68

    Article  CAS  PubMed  Google Scholar 

  198. Held K, Lane T (2014) Spinal cord injury, immunodepression, and antigenic challenge. Semin Immunol 26(5):415–420

    Article  CAS  PubMed  Google Scholar 

  199. Tysseling V, Mithal D, Sahni V, Birch D, Jung H, Belmadani A, Miller R, Kessler J (2011) SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation 8:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. He W, Qu T, Yu Q, Wang Z, Lv H, Zhang J, Zhao X, Wang P (2013) LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. Int Endod J 46(2):128–136

    Article  CAS  PubMed  Google Scholar 

  201. Heiman A, Pallottie A, Heary R, Elkabes S (2014) Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun 42:232–245

    Article  CAS  PubMed  Google Scholar 

  202. Guth L, Zhang Z, DiProspero N, Joubin K, Fitch M (1994) Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol 126(1):76–87

    Article  CAS  PubMed  Google Scholar 

  203. Vallières N, Berard J, David S, Lacroix S (2006) Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia 53(1):103–113

    Article  PubMed  Google Scholar 

  204. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, Colic M (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 20(4):695–708

    Article  CAS  PubMed  Google Scholar 

  205. McGeachy M, Bak-Jensen K, Chen Y, Tato C, Blumenschein W, McClanahan T, Cua D (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397

    Article  CAS  PubMed  Google Scholar 

  206. Yi J, Wang D, Niu X, Hu J, Zhou Y, Li Z (2015) MicroRNA-155 deficiency suppresses Th17 cell differentiation and improves locomotor recovery after spinal cord injury. Scand J Immunol 81(5):284–290

    Article  CAS  PubMed  Google Scholar 

  207. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara G (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  208. Wada N, Menicanin D, Shi S, Bartold P, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219(3):667–676

    Article  CAS  PubMed  Google Scholar 

  209. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197

    Article  CAS  PubMed  Google Scholar 

  211. Soleymaninejadian E, Pramanik K, Samadian E (2012) Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 67(1):1–8

    Article  CAS  PubMed  Google Scholar 

  212. Wada N, Gronthos S, Bartold P (2013) Immunomodulatory effects of stem cells. Periodontol 2000 63(1):198–216

    Article  PubMed  Google Scholar 

  213. Liu D, Xu J, Liu O, Fan Z, Liu Y, Wang F, Ding G, Wei F, Zhang C, Wang S (2012) Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation. J Clin Periodontol 39(12):1174–1182

    Article  CAS  PubMed  Google Scholar 

  214. Yazid F, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Invest 18(9):2103–2112

    Article  Google Scholar 

  215. Kim J, Park J, Kim S, Im G, Kim B, Lee J, Choi E, Song J, Cho K, Kim C (2014) Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 20(2):191–204

    Article  CAS  PubMed  Google Scholar 

  216. Hall E, Springer J (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1(1):80–100

    Article  PubMed  PubMed Central  Google Scholar 

  217. Beattie M (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10(12):580–583

    Article  CAS  PubMed  Google Scholar 

  218. Nosrat I, Smith C, Mullally P, Olson L, Nosrat C (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19(9):2388–2398

    Article  PubMed  Google Scholar 

  219. Apel C, Forlenza O, de Paula V, Talib L, Denecke B, Eduardo C, Gattaz W (2009) The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J Neural Transm 116(1):71–78

    Article  CAS  PubMed  Google Scholar 

  220. Nesti C, Pardini C, Barachini S, D’Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F (2011) Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res 1367:94–102

    Article  CAS  PubMed  Google Scholar 

  221. Gnecchi M, He H, Liang O, Melo L, Morello F, Mu H, Noiseux N, Zhang L, Pratt R, Ingwall J, Dzau V (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):267–268

    Article  CAS  Google Scholar 

  222. Song M, Jue S, Cho Y, Kim E (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973–983

    Article  CAS  PubMed  Google Scholar 

  223. Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44(2):551–554

    Article  PubMed  Google Scholar 

  224. Alizadeh A, Dyck S, Karimi-Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  225. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig 122(1):80–90

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M (2014) Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 78:16–20

    Article  PubMed  Google Scholar 

  227. Sandner B, Prang P, Rivera F, Aigner L, Blesch A, Weidner N (2012) Neural stem cells for spinal cord repair. Cell Tissue Res 349(1):349–362

    Article  PubMed  Google Scholar 

  228. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A, Ueda M, Furukawa K, Yamamoto A (2015) Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 35(6):2452–2464

    Article  PubMed  Google Scholar 

  230. Houenou L, Oppenheim R, Li L, Lo A, Prevette D (1996) Regulation of spinal motoneuron survival by GDNF during development and following injury. Cell Tissue Res 286(2):219–223

    Article  CAS  PubMed  Google Scholar 

  231. Ramer M, Priestley J, McMahon S (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403(6767):312–316

    Article  CAS  PubMed  Google Scholar 

  232. De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince J, Deumens R, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94(11):1575–1581

    Article  PubMed  Google Scholar 

  233. Tummers M, Thesleff I (2003) Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development 130(6):1049–1057

    Article  CAS  PubMed  Google Scholar 

  234. Ma D, Ma Z, Zhang X, Wang W, Yang Z, Zhang M, Wu G, Lu W, Deng Z, Jin Y (2009) Effect of age and extrinsic microenvironment on the proliferation and osteogenic differentiation of rat dental pulp stem cells in vitro. J Endod 35(11):1546–1553

    Article  PubMed  Google Scholar 

  235. Zhang J, An Y, Gao L, Zhang Y, Jin Y, Chen F (2012) The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 33(29):6974–6986

    Article  CAS  PubMed  Google Scholar 

  236. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S (2010) Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol 223(2):415–422

    CAS  PubMed  Google Scholar 

  237. Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, Kukita T, Nonaka K, Shi S, Yamaza T (2012) Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 7(12):e51777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Seo B, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84(10):907–912

    Article  PubMed  Google Scholar 

  239. Lee S, Chiang P, Tsai Y, Tsai S, Jeng J, Kawata T, Huang H (2010) Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod 36(8):1336–1340

    Article  PubMed  Google Scholar 

  240. Lindemann D, Werle S, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L (2014) Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 59(9):970–976

    Article  CAS  PubMed  Google Scholar 

  241. Chen Y, Huang A, Chan A, Shieh T, Lin L (2011) Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth. J Oral Pathol Med 40(10):793–800

    Article  PubMed  PubMed Central  Google Scholar 

  242. Perry B, Zhou D, Wu X, Yang F, Byers M, Chu T, Hockema J, Woods E, Goebel W (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14(2):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Briquet A, Halleux A, Lechanteur C, Beguin Y (2013) Neuropeptides to replace serum in cryopreservation of mesenchymal stromal cells? Cytotherapy 15(11):1385–1394

    Article  CAS  PubMed  Google Scholar 

  244. Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller L (2015) Cryopreservation does not alter main characteristics of good manufacturing process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy 17(2):186–198

    Article  PubMed  Google Scholar 

  245. Lizier N, Kerkis A, Gomes C, Hebling J, Oliveira C, Caplan A, Kerkis I (2012) Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One 7(6):e39885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Broxmeyer H, Srour E, Hangoc G, Cooper S, Anderson S, Bodine D (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci 100(2):645–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Winter J, Jacobson P, Bullough B, Christensen A, Boyer M, Reems J (2014) Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy 16(7):965–975

    Article  CAS  PubMed  Google Scholar 

  248. Gioventù S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E, Santoro F, Rebulla P (2012) A novel method for banking dental pulp stem cells. Transfus Apheres Sci 47(2):199–206

    Article  Google Scholar 

  249. Lin S, Chang W, Lin C, Hsieh S, Lee S, Fan K, Lin C, Huang H (2015) Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation. Electromagn Biol Med 34(4):302–308

    Article  CAS  PubMed  Google Scholar 

  250. Kumar A, Bhattacharyya S, Rattan V (2015) Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank 16(4):513–522

    Article  CAS  PubMed  Google Scholar 

  251. Yong K, Wan Safwani W, Xu F, Wan Abas W, Choi J, Pingguan-Murphy B (2015) Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank 13(4):231–239

    Article  PubMed  Google Scholar 

  252. Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson W, Baba H (2015) Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 33(6):1902–1914

    Article  CAS  PubMed  Google Scholar 

  253. Lee H, Lee H, Yun Y, Kim J, Ha Y, Yoon do H, Lee S, Shin D (2015) Human adipose stem cells improve mechanical allodynia and enhance functional recovery in a rat model of neuropathic pain. Tissue Eng Part A 21(13–14):2044–2052

    Article  CAS  PubMed  Google Scholar 

  254. Roh D, Seo M, Choi H, Park S, Han H, Beitz A, Kang K, Lee J (2013) Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 22(9):1577–1590

    Article  PubMed  Google Scholar 

  255. Hofstetter C, Holmström N, Lilja J, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad S, Frisén J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353

    Article  CAS  PubMed  Google Scholar 

  256. Macias M, Syring M, Pizzi M, Crowe M, Alexanian A, Kurpad S (2006) Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol 201(2):335–348

    Article  CAS  PubMed  Google Scholar 

  257. Davies J, Pröschel C, Zhang N, Noble M, Mayer-Pröschel M, Davies S (2008) Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J Biol 7(7):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Christensen M, Hulsebosch C (1997) Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp Neurol 147(2):463–475

    Article  CAS  PubMed  Google Scholar 

  259. Romero M, Rangappa N, Li L, Lightfoot E, Garry M, Smith G (2000) Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci 20(12):4435–4445

    CAS  PubMed  Google Scholar 

  260. Tang X, Heron P, Mashburn C, Smith G (2007) Targeting sensory axon regeneration in adult spinal cord. J Neurosci 27(22):6068–6078

    Article  CAS  PubMed  Google Scholar 

  261. Krenz N, Weaver L (2000) Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J Neurochem 74(2):730–739

    Article  CAS  PubMed  Google Scholar 

  262. Brown A, Ricci M, Weaver L (2004) NGF message and protein distribution in the injured rat spinal cord. Exp Neurol 188(1):115–127

    Article  CAS  PubMed  Google Scholar 

  263. Deumens R, Joosten E, Waxman S, Hains B (2008) Locomotor dysfunction and pain: the scylla and charybdis of fiber sprouting after spinal cord injury. Mol Neurobiol 37(1):52–63

    Article  CAS  PubMed  Google Scholar 

  264. Yao Z, Sun X, Li P, Liu H, Wu H, Xi Z, Zheng Z (2015) Neural stem cells transplantation alleviate the hyperalgesia of spinal cord injured (SCI) associated with down-regulation of BDNF. Int J Clin Exp Med 8(1):404–412

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Luo Y, Zou Y, Yang L, Liu J, Liu S, Liu J, Zhou X, Zhang W, Wang T (2013) Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neurosci Lett 549:103–108

    Article  CAS  PubMed  Google Scholar 

  266. Coull J, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter M, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021

    Article  CAS  PubMed  Google Scholar 

  267. Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2012) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16(3):302–307

    Article  CAS  Google Scholar 

  268. Hasbargen T, Ahmed M, Miranpuri G, Li L, Kahle K, Resnick D, Sun D (2010) Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci 1198:168–172

    Article  CAS  PubMed  Google Scholar 

  269. Berger J, Knaepen L, Janssen S, Jaken R, Marcus M, Joosten E, Deumens R (2011) Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res Rev 67(1–2):282–310

    Article  CAS  PubMed  Google Scholar 

  270. Rycaj K, Tang D (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75(19):4003–4011

    Article  CAS  PubMed  Google Scholar 

  271. Miura M, Miura Y, Padilla-Nash H, Molinolo A, Fu B, Patel V, Seo B, Sonoyama W, Zheng J, Baker C, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103

    Article  PubMed  Google Scholar 

  272. Pan Q, Fouraschen S, de Ruiter P, Dinjens W, Kwekkeboom J, Tilanus H, van der Laan L (2014) Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med 239(1):105–115

    Article  CAS  Google Scholar 

  273. Nguyen H, Ravid K (2006) Tetraploidy/aneuploidy and stem cells in cancer promotion: the role of chromosome passenger proteins. J Cell Physiol 208(1):12–22

    Article  CAS  PubMed  Google Scholar 

  274. Roemeling-van Rhijn M, de Klein A, Douben H, Pan Q, van der Laan L, Ijzermans J, Betjes M, Baan C, Weimar W, Hoogduijn M (2013) Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 15(11):1352–1361

    Article  CAS  PubMed  Google Scholar 

  275. Duailibi M, Kulikowski L, Duailibi S, Lipay M, Melaragno M, Ferreira L, Vacanti J, Yelick P (2012) Cytogenetic instability of dental pulp stem cell lines. J Mol Histol 43(1):89–94

    Article  PubMed  Google Scholar 

  276. Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L (2007) Human dental pulp stem cells-isolation and long term cultivation. Acta Medica (Hradec Králové) 50(3):195–201

    Google Scholar 

  277. Suchánek J, Visek B, Soukup T, El-Din Mohamed S, Ivancaková R, Mokrỳ J, Aboul-Ezz E, Omran A (2010) Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. Acta Medica (Hradec Králové) 53(2):93–99

    Google Scholar 

  278. Crowder S, Horton L, Lee S, McClain C, Hawkins O, Palmer A, Bae H, Richmond A, Sung H (2013) Passage-dependent cancerous transformation of human mesenchymal stem cells under carcinogenic hypoxia. FASEB J 27(7):2788–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, Büscher D, Fibbe W, Foussat A, Kwa M, Lantz O, Mačiulaitis R, Palomäki T, Schneider C, Sensebé L, Tachdjian G, Tarte K, Tosca L, Salmikangas P (2013) Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints. Cytotherapy 15(7):753–759

    Article  PubMed  Google Scholar 

  280. Yoon H, Min J, Shin N, Kim Y, Kim J, Hwang Y, Suh J, Hwang O, Jeon S (2013) Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson’s disease? Neural Regen Res 8(13):1190–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Grimm W-D, Arnold W, Becher S, Dannan A, Gassmann G, Philippou S, Dittmar T, Varga G (2009) Does the chronically inflamed periodontium harbour cancer stem cells? In: Dittmar T, Zänker K (eds) Stem cell biology in health and disease. Springe, Dordrecht, pp 251–279. doi:10.1007/978-90-481-3040-5_12

    Chapter  Google Scholar 

  282. Weinberg M, Bral M (1999) Laboratory animal models in periodontology. J Clin Periodontol 26(6):335–340

    Article  CAS  PubMed  Google Scholar 

  283. Li Y, Li D, Raisman G (2015) Functional repair of rat corticospinal tract lesions does not require permanent survival of an immuno-incompatible transplant. Cell Transplant (Epub ahead of print)

  284. Harrington J, Sloan A, Waddington R (2014) Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res 55(1):62–67

    Article  CAS  PubMed  Google Scholar 

  285. Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, Ferrari A, Bruzzesi G, De Pol A (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Hsu S, Huang G, Feng F (2012) Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials 33(9):2642–2655

    Article  CAS  PubMed  Google Scholar 

  287. Karamzadeh R, Eslaminejad M, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69:e4372

    Google Scholar 

  288. Huang A, Chen Y, Chan A, Shieh T, Lin L (2009) Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod 35(5):673–681

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are recipients of subsidies from the Fonds National de la Recherche Scientifique (FNRS) and the Fonds Spéciaux de Recherche Scientifique (FSR, UCL). Supported by European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and by the project ICRC-ERA-HumanBridge (No. 316345) funded by the 7th Framework Programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bianco.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianco, J., De Berdt, P., Deumens, R. et al. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?. Cell. Mol. Life Sci. 73, 1413–1437 (2016). https://doi.org/10.1007/s00018-015-2126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2126-5

Keywords

Navigation