Skip to main content

Advertisement

Log in

microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  2. Huttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    Article  PubMed  CAS  Google Scholar 

  3. Kaikkonen MU, Lam MT, Glass CV (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2:161–179

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. Genomics Proteomics Bioinform 10:246–253

    Article  CAS  Google Scholar 

  6. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: a new source of biomarker. Mutat Res 717:85–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jeffrey SS (2008) Cancer biomarker profiling with microRNAs. Nat Biotechnol 26:400–401

    Article  CAS  PubMed  Google Scholar 

  8. Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ (2013) neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 7:178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Cathew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  10. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  11. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  13. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates micorRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gregory RI, Yan KP, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  16. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105:512–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ender C, Krek A, Friedlander MR et al (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528

    Article  CAS  PubMed  Google Scholar 

  20. Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284:95–103

    Article  CAS  PubMed  Google Scholar 

  21. Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3:311–330

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto Y, Akiyama Y, Yuasa Y (2013) Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 8:e62589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  24. Han J, Pederson JS, Kwon SC et al (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Triboulet R, Chang HM, LaPierre RJ, Gregory RI (2009) Post-transcriptional control of DGCR8 expression by the microprocessor. RNA 15:1005–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Newman MA, Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24:1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute 2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  PubMed  Google Scholar 

  28. Heale BSE, Keegan LP, McGurk L et al (2009) Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28:3145–3156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zhang Z, Qin YW, Brewer G, Jing Q (2012) MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 3:593–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sim SE, Bakes J, Kaang BK (2014) Neuronal activity-dependent regulation of microRNAs. Mol Cells 37:511–517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Lim LP, Lau NC, Garrett-Engele A, Grimson JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  32. Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  CAS  PubMed  Google Scholar 

  33. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  CAS  PubMed  Google Scholar 

  34. Khalaj M, Tavakkoli M, Stranahan AW, Park CY (2014) Pathogenic microRNA’s in myeloid malignancies. Front Genet 5:361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Simone NL, Soule BP, Ly D, Saleh AD et al (2009) Ionizing-induced oxidative stress alters miRNA expression. PLoS One 4:e6377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Kuss AW, Chen W (2008) MicroRNAs in brain function and disease. Curr Neurol Neurosci Rep 8:190–197

    Article  CAS  PubMed  Google Scholar 

  37. Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shi Y, Zhao X, Hsieh J, Wichterle H et al (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–14936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  40. Chen JA, Wichterle H (2012) Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Front Neurosci 6:69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yang D, Li T, Wang Y et al (2012) miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 125:1673–1682

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N et al (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci USA 107:13111–13116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 23:857–864

    Article  CAS  Google Scholar 

  46. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  49. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(Suppl):S2–S9

    Article  PubMed  CAS  Google Scholar 

  50. Manakov SA, Grant SG, Enright AJ (2009) Reciprocal regulation of microRNAs and mRNA profiles in neuronal development and synapse formation. BMC Genom 10:419

    Article  CAS  Google Scholar 

  51. Bruno IG, Karam R, Huang L et al (2011) Identification of microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhou R, Yuan P, Wang Y et al (2009) Evidence of selective microRNAs and their effectors as common long-term targets for the action of mood stabilizers. Neuropsychopharmacology 34:1395–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gao J, Wang WY, Mao YW et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Olde Loohuis NF, Kos A, Martens GJ et al (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152:96–101

    Article  CAS  PubMed  Google Scholar 

  56. Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Vallelunga A, Ragusa M, DiMauro S et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci 8:156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lee ST, Chu K, Im WS (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179

    Article  CAS  PubMed  Google Scholar 

  60. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205

    Article  PubMed Central  PubMed  Google Scholar 

  61. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Moller SG (2014) Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol 68:33–38

    Article  PubMed  CAS  Google Scholar 

  63. Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7:e40028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32:e2317–e2327

    Article  CAS  Google Scholar 

  65. Elfenbein HA, Rosen RF, Stephens SL et al (2007) Cerebral β-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    CAS  PubMed  Google Scholar 

  66. Martinez I, Almstead LL, DiMaio D (2011) MicroRNAs and senescence. Aging 3:77–78

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Li X, Khanna A, Li N, Wang E (2011) Circulatory miR34a as an RNA based, noninvasive biomarker for brain aging. Aging 3:985–1002

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Smit-McBride Z, Forward KI, Nguyen AT (2014) Age-dependent increase in miR-34a expression in the posterior pole of the mouse eye. Mol Vis 20:1569–1578

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM (2013) Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis 4:e545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Cardo LF, Coto E, Ribacoba R, Menéndez M, Moris G, Suárez E, Alvarez V (2014) MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 54:830–836

    Article  CAS  PubMed  Google Scholar 

  72. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    CAS  PubMed  Google Scholar 

  73. Burgos K, Malenica I, Metpally R et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 9:e94839

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Lukiw WJ (2007) MiRNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300

    Article  CAS  PubMed  Google Scholar 

  75. Saba R, Goodman CD, Huzarewich RLCH, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3:e3652

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Montag J, Hitt R, Opitz L (2009) Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 4:36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unravelling trinucleotide repeat diseases. Hum Mol Genet 9:909–916

    Article  CAS  PubMed  Google Scholar 

  79. Everett CM, Wood NW (2004) Trinucleotide repeats and neurodegenerative disease. Brain 127:2385–2405

    Article  CAS  PubMed  Google Scholar 

  80. Pogue AI, Cui JG, Li YY, Chao Y, Culicchia F, Lukiw WJ (2010) MicroRNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 476:18–22

    Article  CAS  PubMed  Google Scholar 

  81. Marti E, Pantano L, Banez-Coronel M et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromol Med 11:183–199

    Article  CAS  Google Scholar 

  83. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Basu U, Guan LL, Moore SS (2012) Functional genomics approach or identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 13:369–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159160

    PubMed Central  PubMed  Google Scholar 

  88. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14:1314–1321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444

    Article  CAS  PubMed  Google Scholar 

  90. Yang J, Chen D, He Y et al (2013) MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 35:11–22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Williams AH, Valdez G, Moresi V et al (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Roccaro AM, Sacco A, Jia X et al (2010) microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116:1506–1514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  96. Lang AE, Lozano AM (1998) Parkinson’s disease—first of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  97. Martins M, Rosa A, Guedes LC et al (2011) Convergence of miRNA expression profiling, α-synuclein interaction and GWAS in Parkinson’s disease. PLoS One 6:e25443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Khoo SK, Petillo D, Kang UJ et al (2012) Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2:321–331

    CAS  PubMed  Google Scholar 

  99. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) microRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 1:263–274

    Google Scholar 

  100. Leidinger P, Backes C, Deutscher S et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Kumar P, Dezso Z, MacKenzie C et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8:e69807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. De Felice B, Guida M, Guida M, Coppola C, de Mieri G, Cotrufo RA (2012) miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508:35–40

    Article  PubMed  CAS  Google Scholar 

  103. Butovsky O, Siddiqui S, Gabriely G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Investig 122:3063–3087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106:13052–13057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466:637–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Cho HJ, Liu G, Jin SM et al (2014) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22:608–620

    Article  CAS  Google Scholar 

  108. Miñones-Moyano E, Porta S, Escaramís G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078

    Article  PubMed  CAS  Google Scholar 

  109. Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127:739–749

    Article  CAS  PubMed  Google Scholar 

  110. Long JM, Lahiri DK (2011) MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 404:889–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Liu W, Liu C, Zhu J et al (2012) MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging 33:522–534

    Article  CAS  PubMed  Google Scholar 

  112. Patel N, Hoang D, Miller N et al (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Delay C, Calon F, Mathews P, Hébert SS (2011) Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener 6:70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Li YY, Cui JG, Hill JM, Bhattacharjee S, Zhao Y et al (2011) Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci Lett 487:94–98

    Article  CAS  PubMed  Google Scholar 

  115. Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29:745–775

    Article  CAS  PubMed  Google Scholar 

  116. Wang WX, Wilfred BR, Madathil SK (2010) miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177:334–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Fang M, Wang J, Zhang X et al (2012) The miR-124 regulates the expression of BACE1/p-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209:94–105

    Article  CAS  PubMed  Google Scholar 

  118. Cheng PH, Li CL, Chang YF et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am Hum Genet 93:306–312

    Article  CAS  Google Scholar 

  119. Rademakers R, Eriksen JL, Baker M et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17:3631–3642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cells. Nucleic Acids Res 33:5394–5403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Lu DP, Read RL, Humphreys DT, Battah FM, Martin DI, Rasko JE (2005) PCR-based expression analysis and identification of microRNAs. J RNAi Gene Silencing 1:44–49

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Soreq L, Salomonis N, Bronstein M et al (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Wang Z (2009) miRNA mimic technology. miRNA interference technologies. Springer, Berlin Heidelberg, pp 93–100

    Chapter  Google Scholar 

  125. Boutla A, Delidakis C, Tabler M (2003) Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 31:4973–4980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Hutvagner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E9

    Article  Google Scholar 

  127. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241

    Article  CAS  PubMed  Google Scholar 

  128. Koval ED, Shaner C, Zhang P et al (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22:4127–4135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  130. Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination of the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292

    Article  CAS  PubMed  Google Scholar 

  131. Tan H, Poidevin M, Li H, Chen D, Jin P (2012) MicroRNA-277 modulates the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS Genet 8:e1002681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotide technology. Methods Mol Biol 676:43–49

    Article  CAS  PubMed  Google Scholar 

  133. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecular inhibitors of miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Serafin A, Foco L, Zanigni S et al (2015) Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa-treated patients with PD. Neurology 84:645–653

    Article  CAS  PubMed  Google Scholar 

  135. Garzon R, Marcucci G, Croce CM (2014) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  Google Scholar 

  136. Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol 12:435–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Xu G, Fewell C, Taylor C et al (2010) Transcriptome and targetome analysis in MIR155 expressing cells using RNA-seq. RNA 16:1610–1622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Yang JH, Li JH, Jiang S, Zhou H, Qu LH (2013) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and miRNA genes from ChIP-Seq data. Nucleic Acids Res 41:D177–D187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Li C, Xiong Q, Zhang J, Ge F, Bi LJ (2012) Quantitative proteomic strategies for the identification of microRNA targets. Expert Rev Proteomics 9:549–559

    Article  CAS  PubMed  Google Scholar 

  143. Kurata R, Yonezawa T, Nakajima H, Takada S, Asahara H (2012) LC-MS/MS-based shotgun proteomics identified the targets of arthritis related microRNA. Arthritis Res Ther 14:P36

    Article  PubMed Central  Google Scholar 

  144. Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menéndez M et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260:1420–1422

    Article  PubMed  Google Scholar 

  145. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Shioya M, Obayashi S, Tabunoki H et al (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36:320–330

    Article  CAS  PubMed  Google Scholar 

  147. Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237

    Article  CAS  PubMed  Google Scholar 

  148. Lee ST, Chu K, Jung KH et al (2014) Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 51:180–186

    Article  PubMed  CAS  Google Scholar 

  149. Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ (2013) Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E (2015) Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson’s disease. FEBS Lett 589:319–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Asikainen S, Rudgalvyte M, Heikkinen L et al (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci 41:210–218

    Article  CAS  PubMed  Google Scholar 

  153. Delay C, Dorval V, Fok A et al (2014) MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms. Front Mol Neurosci 7:67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT (2010) MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 5:e15546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Hebert SS et al (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is funded by The Norwegian Research Council, The Western Norway Regional Health Authority, The Norwegian Centre for Movement Disorders, The Norwegian Parkinson’s Association, and St. John’s University. We thanks Katherine Moller for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Geir Møller.

Additional information

I. Basak and K. S. Patil contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, I., Patil, K.S., Alves, G. et al. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell. Mol. Life Sci. 73, 811–827 (2016). https://doi.org/10.1007/s00018-015-2093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2093-x

Keywords

Navigation