Skip to main content

miRNA Mimic Technology

  • Chapter
  • First Online:
MicroRNA Interference Technologies

Abstract

The miRNA Mimic technology (miR-Mimic) is an innovative approach for gene silencing. This approach generates non-natural double-stranded miRNA-like RNA fragments. Such a RNA fragment is designed to have its 5′ end bearing a partially complementary motif to the selected sequence in the 3′UTR unique to the target gene. Once introduced into cells, this RNA fragment, mimicking an endogenous miRNA, can bind specifically to its target gene and produce post-transcriptional repression, more specifically translational inhibition, of the gene. Unlike endogenous miRNAs, miR-Mimics act in a gene-specific fashion. The miR-Mimic approach belongs to the “miRNA-targeting” and “miRNA-gain-of-function” strategy and is primarily used as an exogenous tool to study gene function by targeting mRNA through miRNA-like actions in mammalian cells. The technology was developed by my research group (Department of Medicine, Montreal Heart Institute, University of Montreal) in 2007 [Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z, J Cell Physiol 212:285–292, 2007; Xiao J, Lin H, Luo X, Chen G, Wang Z, Mol Cell, 2008]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:404–418.

    Article  CAS  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511.

    Article  PubMed  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200.

    Article  PubMed  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Ha I, Wightman B, Ruvkun G (1996) A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10:3041–3050.

    Article  PubMed  CAS  Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606.

    Article  PubMed  CAS  Google Scholar 

  • Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060.

    Article  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m(7)G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151.

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 32:6284–6291.

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798.

    Article  PubMed  CAS  Google Scholar 

  • Martin SE, Caplen NJ (2006) Mismatched siRNAs downregulate mRNAs as a function of target site location. FEBS Lett 580:3694–3698.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980.

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–132.

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Lin H, Luo X, Chen G,Wang H,Wang Z (2009) miRNA-605 joins the p53 network to form a p53:miRNA-605:Mdm2 positive feedback loop in response to cellular stress. Nat Cell Biol (in revision).

    Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2009). miRNA Mimic Technology. In: MicroRNA Interference Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00489-6_4

Download citation

Publish with us

Policies and ethics