Skip to main content
Log in

Gene Dysregulation in Huntington’s Disease: REST, MicroRNAs and Beyond

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an incurable, fatal neurodegenerative disorder that is caused by a polyglutamine expansion in the huntingtin (Htt) protein. Neuronal death in the striatum—the most obvious manifestation of the disease—is likely to result from widespread dysregulation of gene expression in various brain regions. To date, several potential mechanisms for this have been discovered, including one involving REST (RE1-Silencing Transcription Factor), a master regulator of neuronal genes. Recently, independent studies have demonstrated that post-transcriptional gene regulation by microRNAs is also disrupted in HD. Expression of key neuronal microRNAs—including mir-9/9*, mir-124 and mir-132—is repressed in the brains of human HD patients and mouse models. These changes occur downstream of REST, and are likely to result in major disruption of mRNA regulation and neuronal function. In this study we will discuss these findings and their implications for our understanding of HD. Using updated bioinformatic analysis, we predict 21 new candidate microRNAs in HD. We propose future strategies for unifying large-scale transcriptional and microRNA datasets with the aim of explaining HD aetiology. By way of example, we show how available genomic datasets can be integrated to provide independent, analytical validation for dysregulation of REST and microRNA mir-124 in HD. As a consequence, gene ontology analysis indicates that HD is characterised by a broad-based depression of neural genes in the caudate and motor cortex. Thus, we propose that a combination of REST, microRNAs and possibly other non-coding RNAs profoundly affect the neuronal transcriptome in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HD:

Huntington’s disease

Htt:

Huntingtin

mutHtt:

Mutant huntingtin

BDNF:

Brain-derived neurotrophic factor

miRNA:

MicroRNA

REST:

Repressor element 1-silencing transcription factor

RE1:

Repressor element 1

NRSF:

Neuron-restrictive silencing factor

NRSE:

Neuron-restrictive silencing element

SCA:

Spinocerebellar ataxia

SP1:

Specificity protein 1

RISC:

RNA-induced silencing complex

DRPLA:

Dentatorubral-pallidoluysian atrophy

SBMA:

Spinobulbar muscular atrophy

MRE:

MicroRNA response element

CREB:

cAMP response element binding

MeCP2:

Methyl CpG binding protein 2

BACE1:

β-site of APP cleaving enzyme

AD:

Alzheimer’s disease

ncRNA:

Noncoding RNA

ChIP-Seq:

Chromatin immunoprecipitation coupled to high-throughput sequencing

References

  • Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310, 317–320. doi:10.1126/science.1116502.

    PubMed  CAS  Google Scholar 

  • Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102, 18017–18022. doi:10.1073/pnas.0508823102.

    PubMed  CAS  Google Scholar 

  • Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., et al. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860. doi:10.1038/39885.

    PubMed  CAS  Google Scholar 

  • Arzberger, T., Krampfl, K., Leimgruber, S., & Weindl, A. (1997). Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. Journal of Neuropathology and Experimental Neurology, 56, 440–454. doi:10.1097/00005072-199704000-00013.

    PubMed  CAS  Google Scholar 

  • Augood, S. J., Faull, R. L., & Emson, P. C. (1997). Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Annals of Neurology, 42, 215–221. doi:10.1002/ana.410420213.

    PubMed  CAS  Google Scholar 

  • Bae, B.-I., Xu, H., Igarashi, S., Fujimuro, M., Agrawal, N., et al. (2005). p53 mediates cellular dysfunction and behavioral abnormalities in huntington’s disease. Neuron, 47, 29–41. doi:10.1016/j.neuron.2005.06.005.

    PubMed  CAS  Google Scholar 

  • Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M. F., et al. (2008). MicroRNA expression in the adult mouse central nervous system. RNA, 14, 432–444. doi:10.1261/rna.783108.

    PubMed  CAS  Google Scholar 

  • Ballas, N., Battaglioli, E., Atouf, F., Andres, M. E., Chenoweth, J., et al. (2001). Regulation of neuronal traits by a novel transcriptional complex. Neuron, 31, 353–365. doi:10.1016/S0896-6273(01)00371-3.

    PubMed  CAS  Google Scholar 

  • Bartel, D. P. (2003). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. doi:10.1016/S0092-8674(04)00045-5.

    Google Scholar 

  • Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. doi:10.1016/j.cell.2009.01.002.

    PubMed  CAS  Google Scholar 

  • Benn, C. L., Sun, T., Sadri-Vakili, G., McFarland, K. N., DiRocco, D. P., et al. (2008). Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. Journal of Neuroscience, 28, 10720–10733. doi:10.1523/JNEUROSCI.2126-08.2008.

    PubMed  CAS  Google Scholar 

  • Bilen, J., Liu, N., Burnett, B., Pittman, R., & Bonini, N. (2006). MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Molecular Cell, 24, 157–163. doi:10.1016/j.molcel.2006.07.030.

    PubMed  CAS  Google Scholar 

  • Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., et al. (2005). Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. PNAS, 102, 11023–11028. doi:10.1073/pnas.0504921102.

    PubMed  CAS  Google Scholar 

  • Boutell, J. M., Thomas, P., Neal, J. W., Weston, V. J., Duce, J., et al. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Human Molecular Genetics, 8, 1647–1655. doi:10.1093/hmg/8.9.1647.

    PubMed  CAS  Google Scholar 

  • Bruce, A. W., Donaldson, I. J., Wood, I. C., Yerbury, S. A., Sadowski, M. I., et al. (2004). Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. PNAS, 101, 10458–10463. doi:10.1073/pnas.0401827101.

    PubMed  CAS  Google Scholar 

  • Calderone, A., Jover, T., Noh, K.-M., Tanaka, H., Yokota, H., et al. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. Journal of Neuroscience, 23, 2112–2121.

    PubMed  CAS  Google Scholar 

  • Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618. doi:10.1038/nm1582.

    PubMed  CAS  Google Scholar 

  • Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563. doi:10.1126/science.1112014.

    PubMed  CAS  Google Scholar 

  • Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6, 919–930. doi:10.1038/nrn1806.

    PubMed  CAS  Google Scholar 

  • Cha, J. H. (2007). Transcriptional signatures in Huntington’s disease. Progress in Neurobiology, 83, 228–248. doi:10.1016/j.pneurobio.2007.03.004.

    PubMed  CAS  Google Scholar 

  • Chen, J.-F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233. doi:10.1038/ng1725.

    PubMed  CAS  Google Scholar 

  • Chen, Z.-F., Paquette, A. J., & Anderson, D. J. (1998). NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genetics, 20, 136–142. doi:10.1038/2431.

    PubMed  CAS  Google Scholar 

  • Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., et al. (2006). Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiology of Disease, 22, 233–241. doi:10.1016/j.nbd.2005.11.001.

    PubMed  CAS  Google Scholar 

  • Chong, J., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J., Zheng, Y., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957. doi:10.1016/0092-8674(95)90298-8.

    PubMed  CAS  Google Scholar 

  • Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726.

    PubMed  CAS  Google Scholar 

  • Conaco, C., Otto, S., Han, J.-J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. PNAS, 103, 2422–2427. doi:10.1073/pnas.0511041103.

    PubMed  CAS  Google Scholar 

  • Dinger, M. E., Amaral, P. P., Mercer, T. R., Pang, K. C., Bruce, S. J., et al. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18, 1433–1445. doi:10.1101/gr.078378.108.

    PubMed  CAS  Google Scholar 

  • Dunah, A. W., Jeong, H., Griffin, A., Kim, Y. M., Standaert, D. G., et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 296, 2238–2243. doi:10.1126/science.1072613.

    PubMed  CAS  Google Scholar 

  • Eskenazi, B. R., Wilson-Rich, N. S., & Starks, P. T. (2007). A Darwinian approach to Huntington’s disease: Subtle health benefits of a neurological disorder. Medical Hypotheses, 69, 1183–1189. doi:10.1016/j.mehy.2007.02.046.

    PubMed  Google Scholar 

  • Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14, 723–730. doi:10.1038/nm1784.

    PubMed  CAS  Google Scholar 

  • Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., et al. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 310, 1817–1821. doi:10.1126/science.1121158.

    PubMed  CAS  Google Scholar 

  • Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., et al. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 20, 1470–1484. doi:10.1101/gad.1416106.

    PubMed  CAS  Google Scholar 

  • Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Jr., Bird, E. D., et al. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230, 561–563. doi:10.1126/science.2931802.

    PubMed  CAS  Google Scholar 

  • Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9, 102–114. doi:10.1038/nrg2290.

    PubMed  CAS  Google Scholar 

  • Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 26, 407–415. doi:10.1038/nbt1394.

    PubMed  Google Scholar 

  • Gangaraju, V. K., & Lin, H. (2009). MicroRNAs: Key regulators of stem cells. Nature Reviews. Molecular Cell Biology, 10, 116–125. doi:10.1038/nrm2621.

    PubMed  CAS  Google Scholar 

  • Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838. doi:10.1126/science.1109020.

    PubMed  CAS  Google Scholar 

  • Greenway, D. J., Street, M., Jeffries, A., & Buckley, N. J. (2007). RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells, 25, 354–363. doi:10.1634/stemcells.2006-0207.

    PubMed  CAS  Google Scholar 

  • Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32, D109–D111. doi:10.1093/nar/gkh023.

    PubMed  CAS  Google Scholar 

  • He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134. doi:10.1038/nature05939.

    PubMed  CAS  Google Scholar 

  • He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833. doi:10.1038/nature03552.

    PubMed  CAS  Google Scholar 

  • Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415–6420. doi:10.1073/pnas.0710263105.

    PubMed  CAS  Google Scholar 

  • Hedreen, J. C., Peyser, C. E., Folstein, S. E., & Ross, C. A. (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neuroscience Letters, 133, 257–261. doi:10.1016/0304-3940(91)90583-F.

    PubMed  CAS  Google Scholar 

  • Hodges, A., Strand, A. D., Aragaki, A. K., Kuhn, A., Sengstag, T., et al. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics, 15, 965–977. doi:10.1093/hmg/ddl013.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi:10.1023/B:SCAM.0000007124.19463.e5.

    PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell, 72, 971–983. doi:10.1016/0092-8674(93)90585-E.

  • Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041. doi:10.1038/sj.onc.1206928.

    PubMed  Google Scholar 

  • Johnson, R., Gamblin, R. J., Ooi, L., Bruce, A. W., Donaldson, I. J., et al. (2006). Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 34, 3862–3877. doi:10.1093/nar/gkl525.

    PubMed  CAS  Google Scholar 

  • Johnson, D., Mortazavi, A., Myers, R., & Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502. doi:10.1126/science.1141319.

    PubMed  CAS  Google Scholar 

  • Johnson, R., Teh, C. H., Jia, H., Vanisri, R. R., Pandey, T., et al. (2009). Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 15, 85–96. doi:10.1261/rna.1127009.

    PubMed  CAS  Google Scholar 

  • Johnson, R., Teh, C. H.-L., Kunarso, G., Wong, K. Y., Srinivasan, G., et al. (2008a). REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biology, 6, e256. doi:10.1371/journal.pbio.0060256.

    PubMed  Google Scholar 

  • Johnson, R., Zuccato, C., Belyaev, N. D., Guest, D. J., Cattaneo, E., et al. (2008b). A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiology of Disease, 29, 438–445. doi:10.1016/j.nbd.2007.11.001.

    PubMed  CAS  Google Scholar 

  • Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., & Cohen, S. M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131, 136–145. doi:10.1016/j.cell.2007.09.020.

    PubMed  CAS  Google Scholar 

  • Kegel, K. B., Meloni, A. R., Yi, Y., Kim, Y. J., Doyle, E., et al. (2002). Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. Journal of Biological Chemistry, 277, 7466–7476. doi:10.1074/jbc.M103946200.

    PubMed  CAS  Google Scholar 

  • Kim, M. O., Chawla, P., Overland, R. P., Xia, E., Sadri-Vakili, G., et al. (2008). Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. Journal of Neuroscience, 28, 3947–3957. doi:10.1523/JNEUROSCI.5667-07.2008.

    PubMed  CAS  Google Scholar 

  • Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224. doi:10.1126/science.1140481.

    PubMed  CAS  Google Scholar 

  • Kosik, K. S. (2006). The neuronal microRNA system. Nature Reviews Neuroscience, 7, 911–920. doi:10.1038/nrn2037.

    PubMed  CAS  Google Scholar 

  • Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274–1281. doi:10.1261/rna.5980303.

    PubMed  CAS  Google Scholar 

  • Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864. doi:10.1634/stemcells.2005-0441.

    PubMed  CAS  Google Scholar 

  • Kuhn, A., Goldstein, D. R., Hodges, A., Strand, A. D., Sengstag, T., et al. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 16, 1845–1861. doi:10.1093/hmg/ddm133.

    PubMed  CAS  Google Scholar 

  • Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414. doi:10.1016/j.cell.2007.04.040.

    PubMed  CAS  Google Scholar 

  • Lanz, R., McKenna, N., Onate, S., Albrecht, U., Wong, J., et al. (1999). A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell, 97, 17–27. doi:10.1016/S0092-8674(00)80711-4.

    PubMed  CAS  Google Scholar 

  • Leone, S., Mutti, C., Kazantsev, A., Sturlese, M., Moro, S., et al. (2008). SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorganic & Medicinal Chemistry, 16, 5695–5703. doi:10.1016/j.bmc.2008.03.067.

    CAS  Google Scholar 

  • Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., et al. (2008). MicroRNA-9 directs late organizer activity of the midbrain–hindbrain boundary. Nature Neuroscience, 11, 641–648. doi:10.1038/nn.2115.

    PubMed  CAS  Google Scholar 

  • Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115, 787–798. doi:10.1016/S0092-8674(03)01018-3.

    PubMed  CAS  Google Scholar 

  • Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773. doi:10.1038/nature03315.

    PubMed  CAS  Google Scholar 

  • Lipovich, L., Vanisri, R. R., Kong, S. L., Lin, C. Y., & Liu, E. T. (2006). Primate-specific endogenous cis-antisense transcription in the human 5q31 protocadherin gene cluster. Journal of Molecular Evolution, 62, 73–88. doi:10.1007/s00239-005-0041-3.

    PubMed  CAS  Google Scholar 

  • Louro, R., Nakaya, H. I., Amaral, P. P., Festa, F., Sogayar, M. C., et al. (2007). Androgen responsive intronic non-coding RNAs. BMC Biology, 5, 4. doi:10.1186/1741-7007-5-4.

    PubMed  Google Scholar 

  • Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838. doi:10.1038/nature03702.

    PubMed  CAS  Google Scholar 

  • Luthi-Carter, R., Hanson, S. A., Strand, A. D., Bergstrom, D. A., Chun, W., et al. (2002). Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Human Molecular Genetics, 11, 1911–1926. doi:10.1093/hmg/11.17.1911.

    PubMed  CAS  Google Scholar 

  • Luthi-Carter, R., Strand, A., Peters, N. L., Solano, S. M., Hollingsworth, Z. R., et al. (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Human Molecular Genetics, 9, 1259–1271. doi:10.1093/hmg/9.9.1259.

    PubMed  CAS  Google Scholar 

  • Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448. doi:10.1016/j.molcel.2007.07.015.

    PubMed  CAS  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506. doi:10.1016/S0092-8674(00)81369-0.

    PubMed  CAS  Google Scholar 

  • Mariner, P. D., Walters, R. D., Espinoza, C. A., Drullinger, L. F., Wagner, S. D., et al. (2008). Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Molecular Cell, 29, 499–509. doi:10.1016/j.molcel.2007.12.013.

    PubMed  CAS  Google Scholar 

  • McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Human Molecular Genetics, 9, 2197–2202. doi:10.1093/hmg/9.14.2197.

    PubMed  CAS  Google Scholar 

  • Mehler, M. F., & Mattick, J. S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiological Reviews, 87, 799–823. doi:10.1152/physrev.00036.2006.

    PubMed  CAS  Google Scholar 

  • Meister, G., Landthaler, M., Peters, L., Chen, P. Y., Urlaub, H., et al. (2005). Identification of novel argonaute-associated proteins. Current Biology, 15, 2149–2155. doi:10.1016/j.cub.2005.10.048.

    PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., & Mattick, J. S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105, 716–721. doi:10.1073/pnas.0706729105.

    PubMed  CAS  Google Scholar 

  • Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., et al. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68. doi:10.1186/gb-2004-5-9-r68.

    PubMed  Google Scholar 

  • Mortazavi, A., Thompson, E. C. L., Garcia, S. T., Myers, R. M., & Wold, B. (2006). Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Research, 16, 1208–1221. doi:10.1101/gr.4997306.

    PubMed  CAS  Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. doi:10.1038/nmeth.1226.

    PubMed  CAS  Google Scholar 

  • Nakamura, K., Jeong, S. Y., Uchihara, T., Anno, M., Nagashima, K., et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics, 10, 1441–1448. doi:10.1093/hmg/10.14.1441.

    PubMed  CAS  Google Scholar 

  • Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.1093/hmg/ddn011.

    PubMed  CAS  Google Scholar 

  • Olson, M. V., & Varki, A. (2003). Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Review. Genetics, 4, 20–28. doi:10.1038/nrg981.

    CAS  Google Scholar 

  • Ooi, L., & Wood, I. C. (2007). Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 8, 544–554. doi:10.1038/nrg2100.

    PubMed  CAS  Google Scholar 

  • Otto, S. J., McCorkle, S. R., Hover, J., Conaco, C., Han, J.-J., et al. (2007). A new binding motif for the transcriptional repressor rest uncovers large gene networks devoted to neuronal functions. Journal of Neuroscience, 27, 6729–6739. doi:10.1523/JNEUROSCI.0091-07.2007.

    PubMed  CAS  Google Scholar 

  • Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008.

    PubMed  CAS  Google Scholar 

  • Palm, K., Belluardo, N., Metsis, M., & To, Timmusk. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.

    PubMed  CAS  Google Scholar 

  • Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246. doi:10.1016/j.molcel.2008.08.022.

    PubMed  CAS  Google Scholar 

  • Patel, N., Hoang, D., Miller, N., Ansaloni, S., Huang, Q., et al. (2008). MicroRNAs can regulate human APP levels. Molecular Neurodegeneration, 3, 10. doi:10.1186/1750-1326-3-10.

    PubMed  Google Scholar 

  • Perez, D. S., Hoage, T. R., Pritchett, J. R., Ducharme-Smith, A. L., Halling, M. L., et al. (2008). Long, abundantly expressed non-coding transcripts are altered in cancer. Human Molecular Genetics, 17, 642–655. doi:10.1093/hmg/ddm336.

    PubMed  CAS  Google Scholar 

  • Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M.-A., Coppens, S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172. doi:10.1038/nature05113.

    PubMed  CAS  Google Scholar 

  • Ponjavic, J., Ponting, C. P., & Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Research, 17, 556–565. doi:10.1101/gr.6036807.

    PubMed  CAS  Google Scholar 

  • Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M. S., et al. (2008). RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851–1854. doi:10.1126/science.1164096.

    PubMed  CAS  Google Scholar 

  • Qiu, Z., Norflus, F., Singh, B., Swindell, M. K., Buzescu, R., et al. (2006). Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. Journal of Biological Chemistry, 281, 16672–16680. doi:10.1074/jbc.M511648200.

    PubMed  CAS  Google Scholar 

  • Rajewsky, N., & Socci, N. D. (2004). Computational identification of microRNA targets. Developmental Biology, 267, 529–535. doi:10.1016/j.ydbio.2003.12.003.

    PubMed  CAS  Google Scholar 

  • Ravasi, T., Suzuki, H., Pang, K. C., Katayama, S., Furuno, M., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16, 11–19. doi:10.1101/gr.4200206.

    PubMed  CAS  Google Scholar 

  • Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., et al. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85, 5733–5737. doi:10.1073/pnas.85.15.5733.

    PubMed  CAS  Google Scholar 

  • Rigamonti, D., Bolognini, D., Mutti, C., Zuccato, C., Tartari, M., et al. (2007). Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. Journal of Biological Chemistry, 282, 24554–24562. doi:10.1074/jbc.M609885200.

    PubMed  CAS  Google Scholar 

  • Rinn, J., Kertesz, M., Wang, J., Squazzo, S., Xu, X., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 127, 1311–1323. doi:10.1016/j.cell.2007.05.022.

    Google Scholar 

  • Runne, H., Kuhn, A., Wild, E. J., Pratyaksha, W., Kristiansen, M., et al. (2007). Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 104, 14424–14429. doi:10.1073/pnas.0703652104.

    PubMed  CAS  Google Scholar 

  • Ruvkun, G. (2001). Molecular biology. Glimpses of a tiny RNA world. Science, 294, 797–799. doi:10.1126/science.1066315.

    PubMed  CAS  Google Scholar 

  • Saba, R., Goodman, C. D., Huzarewich, R. L., Robertson, C., & Booth, S. A. (2008). A miRNA signature of prion induced neurodegeneration. PLoS ONE, 3, e3652. doi:10.1371/journal.pone.0003652.

    PubMed  Google Scholar 

  • Sadri-Vakili, G., Bouzou, B., Benn, C. L., Kim, M. O., Chawla, P., et al. (2007). Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Human Molecular Genetics, 16, 1293–1306. doi:10.1093/hmg/ddm078.

    PubMed  CAS  Google Scholar 

  • Savas, J. N., Makusky, A., Ottosen, S., Baillat, D., Then, F., et al. (2008). Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proceedings of the National Academy of Sciences of the United States of America, 105, 10820–10825. doi:10.1073/pnas.0800658105.

    PubMed  CAS  Google Scholar 

  • Schaefer, A., O’Carroll, D., Tan, C. L., Hillman, D., Sugimori, M., et al. (2007). Cerebellar neurodegeneration in the absence of microRNAs. Journal of Experimental Medicine, 204, 1553–1558. doi:10.1084/jem.20070823.

    PubMed  CAS  Google Scholar 

  • Schoenherr, C., & Anderson, D. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 5202, 1360–1363. doi:10.1126/science.7871435.

    Google Scholar 

  • Schoenherr, C. J., Paquette, A. J., & Anderson, D. J. (1996). Identification of potential target genes for the neuron-restrictive silencer factor. Proceedings of the National Academy of Sciences, 93, 9881–9886. doi:10.1073/pnas.93.18.9881.

    CAS  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.1038/nature04367.

    PubMed  CAS  Google Scholar 

  • Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., et al. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi:10.1186/gb-2004-5-3-r13.

    PubMed  Google Scholar 

  • Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421. doi:10.1523/JNEUROSCI.3219-08.2008.

    PubMed  CAS  Google Scholar 

  • Shimojo, M. (2008). Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. Journal of Biological Chemistry, 283, 34880–34886. doi:10.1074/jbc.M804183200.

    PubMed  CAS  Google Scholar 

  • Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., et al. (2005). Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience, 21, 1469–1477. doi:10.1111/j.1460-9568.2005.03978.x.

    PubMed  Google Scholar 

  • Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., et al. (1993). Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genetics, 4, 393–397. doi:10.1038/ng0893-393.

    PubMed  CAS  Google Scholar 

  • Sood, P., Krek, A., Zavolan, M., Macino, G., & Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. PNAS, 103, 2746–2751. doi:10.1073/pnas.0511045103.

    PubMed  CAS  Google Scholar 

  • Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40, 751–760. doi:10.1038/ng.138.

    PubMed  CAS  Google Scholar 

  • Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.-Z., et al. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. PNAS, 97, 6763–6768. doi:10.1073/pnas.100110097.

    PubMed  CAS  Google Scholar 

  • Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., et al. (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. Journal of Neuroscience, 27, 11758–11768. doi:10.1523/JNEUROSCI.2461-07.2007.

    PubMed  CAS  Google Scholar 

  • Sun, Y.-M., Greenway, D. J., Johnson, R., Street, M., Belyaev, N. D., et al. (2005). Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Molecular Biology of the Cell, 16, 5630–5638. doi:10.1091/mbc.E05-07-0687.

    PubMed  CAS  Google Scholar 

  • Tochitani, S., & Hayashizaki, Y. (2008). Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochemical and Biophysical Research Communications, 372, 691–696. doi:10.1016/j.bbrc.2008.05.127.

    PubMed  CAS  Google Scholar 

  • Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research, 15, 1746–1758. doi:10.1101/gr.3737405.

    PubMed  CAS  Google Scholar 

  • Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749. doi:10.1101/gad.1519107.

    PubMed  CAS  Google Scholar 

  • Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., et al. (2005). From the cover: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS, 102, 16426–16431. doi:10.1073/pnas.0508448102.

    PubMed  CAS  Google Scholar 

  • Vonsattel, J. P., & DiFiglia, M. (1998). Huntington disease. Journal of Neuropathology and Experimental Neurology, 57, 369–384. doi:10.1097/00005072-199805000-00001.

    PubMed  CAS  Google Scholar 

  • Walker, F. O. (2007). Huntington’s disease. Lancet, 369, 218–228. doi:10.1016/S0140-6736(07)60111-1.

    PubMed  CAS  Google Scholar 

  • Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008.

    PubMed  Google Scholar 

  • Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.1073/pnas.0803072105.

    PubMed  CAS  Google Scholar 

  • Wheeler, V. C., Auerbach, W., White, J. K., Srinidhi, J., Auerbach, A., et al. (1999). Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Human Molecular Genetics, 8, 115–122. doi:10.1093/hmg/8.1.115.

    PubMed  CAS  Google Scholar 

  • Willingham, A., Orth, A., Batalov, S., Peters, E., Wen, B., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570–1573. doi:10.1126/science.1115901.

    PubMed  CAS  Google Scholar 

  • Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7, R85. doi:10.1186/gb-2006-7-9-r85.

    PubMed  Google Scholar 

  • Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314, 2618–2633. doi:10.1016/j.yexcr.2008.06.002.

    PubMed  CAS  Google Scholar 

  • Zabel, C., Chamrad, D. C., Priller, J., Woodman, B., Meyer, H. E., et al. (2002). Alterations in the mouse and human proteome caused by Huntington’s disease. Molecular & Cellular Proteomics, 1, 366–375. doi:10.1074/mcp.M200016-MCP200.

    CAS  Google Scholar 

  • Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., et al. (2007a). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 21, 1190–1203. doi:10.1101/gad.1543507.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., et al. (2007b). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303–317. doi:10.1016/j.cell.2007.03.030.

    PubMed  CAS  Google Scholar 

  • Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., et al. (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in huntington’s disease. Journal of Neuroscience, 27, 6972–6983. doi:10.1523/JNEUROSCI.4278-06.2007.

    PubMed  CAS  Google Scholar 

  • Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81, 294–330. doi:10.1016/j.pneurobio.2007.01.003.

    PubMed  CAS  Google Scholar 

  • Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498. doi:10.1126/science.1059581.

    PubMed  CAS  Google Scholar 

  • Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35, 76–83. doi:10.1038/ng1219.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Chiara Zuccato (University of Milan), Andrew M. Thomson (Genome Institute of Singapore) and Lawrence W. Stanton (Genome Institute of Singapore) for advice, discussions and critical reading of the manuscript. RJ is a postdoctoral fellow funded by the Singapore Agency for Science, Technology and Research (A*STAR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rory Johnson or Noel J. Buckley.

Additional information

Both the authors are joint corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R., Buckley, N.J. Gene Dysregulation in Huntington’s Disease: REST, MicroRNAs and Beyond. Neuromol Med 11, 183–199 (2009). https://doi.org/10.1007/s12017-009-8063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8063-4

Keywords

Navigation