Skip to main content

Advertisement

Log in

Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Since the discovery of cytoglobin (Cygb) a decade ago, growing amounts of data have been gathered to characterise Cygb biochemistry, functioning and implication in human pathologies. Its molecular roles remain under investigation, but nitric oxide dioxygenase and lipid peroxidase activities have been demonstrated. Cygb expression increases in response to various stress conditions including hypoxia, oxidative stress and fibrotic stimulation. When exogenously overexpressed, Cygb revealed cytoprotection against these factors. Cygb was shown to be upregulated in fibrosis and neurodegenerative disorders and downregulated in multiple cancer types. CYGB was also found within the minimal region of a hereditary tylosis with oesophageal cancer syndrome, and its expression was reduced in tylotic samples. Recently, Cygb has been shown to inhibit cancer cell growth in vitro, thus confirming its suggested tumour suppressor role. This article aims to review the biochemical and functional aspects of Cygb, its involvement in various pathological conditions and potential clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201(Pt 8):1099–1117

    PubMed  CAS  Google Scholar 

  2. Weber RE, Fago A (2004) Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir Physiol Neurobiol 144(2–3):141–159. doi:10.1016/j.resp.2004.04.018

    Article  PubMed  CAS  Google Scholar 

  3. Wajcman H, Kiger L, Marden MC (2009) Structure and function evolution in the superfamily of globins. C R Biol 332(2–3):273–282. doi:S1631-0691(08)00227-8

    Article  PubMed  CAS  Google Scholar 

  4. Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19(4):416–421

    PubMed  CAS  Google Scholar 

  5. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407(6803):520–523. doi:10.1038/35035093

    Article  PubMed  CAS  Google Scholar 

  6. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, Sanctis DD, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99(1):110–119

    Article  PubMed  CAS  Google Scholar 

  7. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin fresh blood for the vertebrate globin family. EMBO Rep 3(12):1146–1151

    Article  PubMed  CAS  Google Scholar 

  8. Trent JT, Hargrove MS (2002) A ubiquitously expressed human hexacoordinate hemoglobin. J Bio Chem 277(22):19538–19545

    Article  CAS  Google Scholar 

  9. Gardner PR (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J Inorg Biochem 99(1):247–266. doi:S0162-0134(04)00296-X

    Article  PubMed  CAS  Google Scholar 

  10. Gladwin MT, Grubina R, Doyle MP (2009) The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase. Acc Chem Res 42(1):157–167. doi:10.1021/ar800089j

    Article  PubMed  CAS  Google Scholar 

  11. Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112(7):2636–2647. doi:blood-2008-01-115261

    Article  PubMed  CAS  Google Scholar 

  12. Reeder BJ (2010) The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxid Redox Signal 13(7):1087–1123. doi:10.1089/ars.2009.2974

    Article  PubMed  CAS  Google Scholar 

  13. Vinogradov SN, Moens L (2008) Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem 283(14):8773–8777. doi:R700029200

    Article  PubMed  CAS  Google Scholar 

  14. Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem 276(27):25318–25323

    Article  PubMed  CAS  Google Scholar 

  15. Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278(51):51713–51721

    Article  PubMed  CAS  Google Scholar 

  16. De Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. J Mol Biol 336(4):917–927

    Article  PubMed  CAS  Google Scholar 

  17. Lechauve C, Chauvierre C, Dewilde S, Moens L, Green BN, Marden MC, Celier C, Kiger L (2010) Cytoglobin conformations and disulfide bond formation. FEBS J 277(12):2696–2704. doi:EJB7686

    Article  PubMed  CAS  Google Scholar 

  18. Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) Structural basis of human cytoglobin for ligand binding. J Mol Biol 339(4):873–885

    Article  PubMed  CAS  Google Scholar 

  19. Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, Fuchs C, Hankeln T (2004) Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56(11–12):703–707

    Article  PubMed  CAS  Google Scholar 

  20. Sawai H, Kawada N, Yoshizato K, Nakajima H, Aono S, Shiro Y (2003) Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry 42(17):5133–5142. doi:10.1021/bi027067e

    Article  PubMed  CAS  Google Scholar 

  21. Hodges NJ, Innocent N, Dhanda S, Graham M (2008) Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis 23(4):293–298. doi:10.1093/mutage/gen013

    Article  PubMed  CAS  Google Scholar 

  22. Reeder BJ, Svistunenko D, Wilson M (2010) Lipid binding to cytoglobin leads to a change in heme coordination: a role for cytoglobin in lipid signalling of oxidative stress. Biochem J. doi:BJ20101136

  23. Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans J-P, Moens L (2003) A globin in the nucleus. J Biol Chem 278(33):30417–30420

    Article  PubMed  CAS  Google Scholar 

  24. Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A (2010) Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 1331:58–73. doi:S0006-8993(10)00629-3

    Article  PubMed  CAS  Google Scholar 

  25. Mammen PPA, Shelton JM, Ye Q, Kanatous SB, McGrath AJ, Richardson JA, Garry DJ (2006) Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem 54(12):1349–1361. doi:10.1369/jhc.6A7008.2006

    Article  PubMed  CAS  Google Scholar 

  26. Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim D-H, Nakajima Y, Seki S, Kawada N, Yoshizato K (2003) Cytoglobin//STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest 84(1):91–101

    Article  Google Scholar 

  27. Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevo E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T (2004) Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 279(9):8063–8069

    Article  PubMed  CAS  Google Scholar 

  28. Shigematsu A, Adachi Y, Matsubara J, Mukaide H, Koike-Kiriyama N, Minamino K, Shi M, Yanai S, Imamura M, Taketani S, Ikehara S (2008) Analyses of expression of cytoglobin by immunohistochemical studies in human tissues. Hemoglobin 32(3):287–296. doi:10.1080/03630260802017261

    Article  PubMed  CAS  Google Scholar 

  29. Fago A, Hundahl C, Malte H, Weber RE (2004) Functional properties of neuroglobin and cytoglobin. Insights into the ancestral physiological roles of globins. IUBMB Life 56(11–12):689–696

    Article  PubMed  CAS  Google Scholar 

  30. Emara M, Turner AR, Allalunis-Turner J (2010) Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int 10:33. doi:1475-2867-10-33

    Article  PubMed  CAS  Google Scholar 

  31. Man KN, Philipsen S, Tan-Un KC (2008) Localization and expression pattern of cytoglobin in carbon tetrachloride-induced liver fibrosis. Toxicol Lett 183(1–3):36–44. doi:S0378-4274(08)01276-9

    Article  PubMed  CAS  Google Scholar 

  32. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D, Moens L, Dewilde S (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410(2):146–151

    Article  PubMed  CAS  Google Scholar 

  33. Li RC, Lee SK, Pouranfar F, Brittian KR, Clair HB, Row BW, Wang Y, Gozal D (2006) Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Res 1096(1):173–179

    Article  PubMed  CAS  Google Scholar 

  34. Ostojic J, Sakaguchi DS, de Lathouder Y, Hargrove MS, Trent JT III, Kwon YH, Kardon RH, Kuehn MH, Betts DM, Grozdanic S (2006) Neuroglobin and cytoglobin: oxygen-binding proteins in retinal neurons. Invest Ophthalmol Vis Sci 47(3):1016–1023. doi:10.1167/iovs.05-0465

    Article  PubMed  Google Scholar 

  35. Gorr TA, Wichmann D, Pilarsky C, Theurillat JP, Fabrizius A, Laufs T, Bauer T, Koslowski M, Horn S, Burmester T, Hankeln T, Kristiansen G (2010) Old proteins—new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2010.02205.x

  36. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424. doi:87/1/315

    Article  PubMed  CAS  Google Scholar 

  37. Wystub S, Ebner B, Fuchs C, Weich B, Burmester T, Hankeln T (2004) Interspecies comparison of neuroglobin, cytoglobin and myoglobin: sequence evolution and candidate regulatory elements. Cytogenet Genome Res 105(1):65–78

    Article  PubMed  CAS  Google Scholar 

  38. McRonald FE, Liloglou T, Xinarianos G, Hill L, Rowbottom L, Langan JE, Ellis A, Shaw JM, Field JK, Risk JM (2006) Down-regulation of the cytoglobin gene, located on 17q25, in tylosis with oesophageal cancer (TOC): evidence for trans-allele repression. Hum Mol Genet 15(8):1271–1277. doi:10.1093/hmg/ddl042

    Article  PubMed  CAS  Google Scholar 

  39. Semenza GL, Jiang B-H, Leung SW, Passantino R, Concordet J-P, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537

    Article  PubMed  CAS  Google Scholar 

  40. Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66(22):3539–3554. doi:10.1007/s00018-009-0147-7

    Article  PubMed  CAS  Google Scholar 

  41. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  42. Swietach P, Vaughan-Jones R, Harris A (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26(2):299–310

    Article  PubMed  CAS  Google Scholar 

  43. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  PubMed  CAS  Google Scholar 

  44. Mole D (2010) Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid Redox Signal 12(4):445–458

    Article  PubMed  CAS  Google Scholar 

  45. Bristow RG, Hill RP (2008) Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3):180–192

    Article  PubMed  CAS  Google Scholar 

  46. Czyzyk-Krzeska MF, Beresh JE (1996) Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3′-untranslated region of the tyrosine hydroxylase mRNA. J Biol Chem 271(6):3293–3299

    Article  PubMed  CAS  Google Scholar 

  47. Guo X, Philipsen S, Tan-Un K-C (2006) Characterization of human cytoglobin gene promoter region. Biochim Biophys Acta Gene Struct Expr 1759(5):208–215

    Article  CAS  Google Scholar 

  48. Cummins E, Taylor C (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450(6):363–371

    Article  PubMed  CAS  Google Scholar 

  49. Cloutier A, Guindi C, Larivee P, Dubois CM, Amrani A, McDonald PP (2009) Inflammatory cytokine production by human neutrophils involves C/EBP transcription factors. J Immunol 182(1):563–571. doi:182/1/563

    PubMed  CAS  Google Scholar 

  50. Glass CK, Saijo K (2008) Immunology: oxysterols hold T cells in check. Nature 455(7209):40–41. doi:455040a

    Article  PubMed  CAS  Google Scholar 

  51. Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1(1):5. doi:1755-1536-1-5

    Article  PubMed  CAS  Google Scholar 

  52. Dwyer J, Li H, Xu D, Liu J-P (2007) Ann N Y Acad Sci 1114:36–47 (Healthy Aging and Longevity Third International Conference)

    Article  PubMed  CAS  Google Scholar 

  53. Nakamura Y, Esnault S, Maeda T, Kelly EAB, Malter JS, Jarjour NN (2004) Ets-1 regulates TNF-a-induced matrix metalloproteinase-9 and tenascin expression in primary bronchial fibroblasts. J Immunol 172(3):1945–1952

    PubMed  CAS  Google Scholar 

  54. Guo X, Philipsen S, Tan-Un K-C (2007) Study of the hypoxia-dependent regulation of human CYGB gene. Biochem Biophys Res Commun 364(1):145–150

    Article  PubMed  CAS  Google Scholar 

  55. Singh S, Manda SM, Sikder D, Birrer MJ, Rothermel BA, Garry DJ, Mammen PPA (2009) Calcineurin activates cytoglobin transcription in hypoxic myocytes. J Biol Chem 284(16):10409–10421

    Article  PubMed  CAS  Google Scholar 

  56. De Beuf A, Hou XH, D’Haese PC, Verhulst A (2010) Epoetin-d reduces oxidative stress in primary human renal tubular cells. J Biomed Biotechnol 2010:395785. doi:10.1155/2010/395785

    PubMed  Google Scholar 

  57. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE (2004) Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. J Biol Chem 279(43):44417–44426

    Article  PubMed  CAS  Google Scholar 

  58. Gardner AM, Cook MR, Gardner PR (2010) Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 285(31):23850–23857. doi:M110.132340

    Article  PubMed  CAS  Google Scholar 

  59. Halligan KE, Jourd’heuil FL, Jourd’heuil D (2009) Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 284(13):8539–8547

    Article  PubMed  CAS  Google Scholar 

  60. Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KD, Olson JS (2006) Hemoglobins dioxygenate nitric oxide with high fidelity. J Inorg Biochem 100(4):542–550. doi:S0162-0134(05)00372-7

    Article  PubMed  CAS  Google Scholar 

  61. Smagghe BJ, Trent James T, III Hargrove, Mark S (2008) NO dioxygenase activity in hemoglobins in ubiquitous in vitro, but limited by reduction in vivo. PLoS One 3(4):e2039

    Article  PubMed  CAS  Google Scholar 

  62. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31. doi:S0891-5849(08)00175-5

    Article  PubMed  CAS  Google Scholar 

  63. Li H, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99(1):293–305. doi:S0162-0134(04)00321-6

    Article  PubMed  CAS  Google Scholar 

  64. Hill BG, Dranka BP, Bailey SM, Lancaster JR Jr, Darley-Usmar VM (2010) What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 285(26):19699–19704. doi:R110.101618

    Article  PubMed  CAS  Google Scholar 

  65. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282(3):1788–1796. doi:M607065200

    Article  PubMed  CAS  Google Scholar 

  66. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95(1):189–197

    PubMed  CAS  Google Scholar 

  67. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14(8):3470–3481. doi:10.1091/mbc.E02-12-0791E02-12-0791

    Article  PubMed  CAS  Google Scholar 

  68. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27(12):2524–2531. doi:ATVBAHA.107.151167

    Article  PubMed  CAS  Google Scholar 

  69. Li D, Chen X, Li W-J, Yang Y-H, Wang J-Z, Yu A (2007) Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res 32(8):1375–1380

    Article  PubMed  CAS  Google Scholar 

  70. Chua P-J, Yip GW-C, Bay B-H (2009) Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells. Exp Biol Med 234(9):1086–1094. doi:10.3181/0903-rm-98

    Article  CAS  Google Scholar 

  71. Fordel E, Thijs L, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin expression in mice. FEBS J 274(5):1312–1317

    Article  PubMed  CAS  Google Scholar 

  72. Xu R, Harrison PM, Chen M, Li L, Tsui T-Y, Fung PCW, Cheung P-T, Wang G, Li H, Diao Y, Krissansen GW, Xu S, Farzaneh F (2006) Cytoglobin overexpression protects against damage-induced fibrosis. Mol Ther 13(6):1093–1100

    Article  PubMed  CAS  Google Scholar 

  73. Mimura I, Nangaku M, Nishi H, Inagi R, Tanaka T, Fujita T (2010) Cytoglobin, a novel globin, plays an anti-fibrotic role in the kidney. Am J Physiol Renal Physiol. doi:ajprenal.00145.2010

  74. Trandafir F, Hoogewijs D, Altieri F, Rivetti di Val Cervo P, Ramser K, Van Doorslaer S, Vanfleteren JR, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin as potential enzyme or substrate. Gene 398(1–2):103–113

    Article  PubMed  CAS  Google Scholar 

  75. Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S (2007) Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 398(1–2):114–122

    Article  PubMed  CAS  Google Scholar 

  76. Petersen MG, Dewilde S, Fago A (2008) Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 102(9):1777–1782

    Article  PubMed  CAS  Google Scholar 

  77. Gardner PR, Gardner AM, Martin LA, Dou Y, Li T, Olson JS, Zhu H, Riggs AF (2000) Nitric-oxide dioxygenase activity and function of flavohemoglobins sensitivity to nitric oxide and carbon monoxide inhibition. J Biol Chem 275(41):31581–31587. doi:10.1074/jbc.M004141200

    Article  PubMed  CAS  Google Scholar 

  78. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. doi:10.1002/path.2277

    Article  PubMed  CAS  Google Scholar 

  79. Zion O, Genin O, Kawada N, Yoshizato K, Roffe S, Nagler A, Iovanna JL, Halevy O, Pines M (2009) Inhibition of transforming growth factor-b signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas 38(4):427–435. doi:10.1097/MPA.0b013e3181967670

    Article  PubMed  CAS  Google Scholar 

  80. Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C, Thunnissen FB, Wistuba II, Czerniak B, Frenkel E, Roth JA, Liloglou T, Xinarianos G, Field JK, Minna JD, Gazdar AF (2008) Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res 68(18):7448–7456. doi:10.1158/0008-5472.can-08-0565

    Article  PubMed  CAS  Google Scholar 

  81. Cao M, Westerhausen-Larson A, Niyibizi C, Kavalkovich K, Georgescu HI, Rizzo CF, Hebda PA, Stefanovic-Racic M, Evans CH (1997) Nitric oxide inhibits the synthesis of type-II collagen without altering Col2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem J 324(Pt 1):305–310

    PubMed  CAS  Google Scholar 

  82. Dooley A, Gao B, Shi-Wen X, Abraham DJ, Black CM, Jacobs M, Bruckdorfer KR (2007) Effect of nitric oxide and peroxynitrite on type I collagen synthesis in normal and scleroderma dermal fibroblasts. Free Radic Biol Med 43(2):253–264. doi:S0891-5849(07)00284-5

    Article  PubMed  CAS  Google Scholar 

  83. Urtasun R, Conde de la Rosa L, Nieto N (2008) Oxidative and nitrosative stress and fibrogenic response. Clin Liver Dis 12(4):769–790. doi:S1089-3261(08)00076-7 viii

    Article  PubMed  CAS  Google Scholar 

  84. Murrell GA (2007) Using nitric oxide to treat tendinopathy. Br J Sports Med 41(4):227–231. doi:bjsm.2006.034447

    Article  PubMed  Google Scholar 

  85. Witte MB, Barbul A (2002) Role of nitric oxide in wound repair. Am J Surg 183(4):406–412. doi:S0002961002008152

    Article  PubMed  CAS  Google Scholar 

  86. Powell FL, Fu Z (2008) HIF-1 and ventilatory acclimatization to chronic hypoxia. Respir Physiol Neurobiol 164(1–2):282–287

    Article  PubMed  CAS  Google Scholar 

  87. Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J, Moens L (2004) Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun 319(2):342–348

    Article  PubMed  CAS  Google Scholar 

  88. Burmester T, Gerlach F, Hankeln T (2007) Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv Exp Med Biol 618:169–180

    Google Scholar 

  89. Shaw RJ, Omar MM, Rokadiya S, Kogera FA, Lowe D, Hall GL, Woolgar JA, Homer J, Liloglou T, Field JK, Risk JM (2009) Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer 101(1):139–144

    Article  PubMed  CAS  Google Scholar 

  90. Stagner JI, Parthasarathy SN, Wyler K, Parthasarathy RN (2005) Protection from ischemic cell death by the induction of cytoglobin. Transplant Proc 37(8):3452–3453

    Article  PubMed  CAS  Google Scholar 

  91. Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J (2010) Oxygen-sensing under the influence of nitric oxide. Cell Signal 22(3):349–356. doi:S0898-6568(09)00321-0

    Article  PubMed  CAS  Google Scholar 

  92. Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, Flamme I, Fandrey J (2008) Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 283(46):31745–31753. doi:M804390200

    Article  PubMed  CAS  Google Scholar 

  93. Huang LE, Willmore WG, Gu J, Goldberg MA, Bunn HF (1999) Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide Implications for oxygen sensing and signaling. J Biol Chem 274(13):9038–9044

    Article  PubMed  CAS  Google Scholar 

  94. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR Jr, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5(12):865–869. doi:nchembio.260

    Article  PubMed  CAS  Google Scholar 

  95. Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138(4):393–404. doi:PPL1314

    Article  PubMed  CAS  Google Scholar 

  96. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91(5):807–819

    Article  PubMed  CAS  Google Scholar 

  97. Higgins DF, Kimuro, Kuniko, Iwano, Masayuki, Hasse, Volker H (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7(9):1128–1132

    Article  PubMed  CAS  Google Scholar 

  98. Walters DM, Cho HY, Kleeberger SR (2008) Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 10(2):321–332

    Article  PubMed  CAS  Google Scholar 

  99. García-Trevijano ER, Iraburu MJ, Fontana L, Domínguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M (1999) Transforming growth factor-b induces the expression of al1(i) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 29(3):960–970

    Article  PubMed  Google Scholar 

  100. Powers JM (2006) p53-mediated apoptosis, neuroglobin overexpression, and globin deposits in a patient with hereditary ferritinopathy. J Neuropathol Exp Neurol 65(7):716–721. doi:10.1097/01.jnen.0000228200.27539.19

    Article  PubMed  CAS  Google Scholar 

  101. Hedley-Whyte ET, Goldman JE, Nedergaard M, Friedman A, Han X, Schmidt RE, Powers JM (2009) Hyaline protoplasmic astrocytopathy of neocortex. J Neuropathol Exp Neurol 68(2):136–147

    Article  PubMed  Google Scholar 

  102. Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, Field JK, Risk JM (2006) Promoter methylation of P16, RARb, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer 94(4):561–568

    Article  PubMed  CAS  Google Scholar 

  103. Xinarianos G, McRonald FE, Risk JM, Bowers NL, Nikolaidis G, Field JK, Liloglou T (2006) Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum Mol Genet 15(13):2038–2044. doi:10.1093/hmg/ddl128

    Article  PubMed  CAS  Google Scholar 

  104. Mozaffarieh M, Grieshaber Matthias C, Flammer Josef (2008) Oxygen and blood flow: players in the pathogenesisof glaucoma. Mol Vis 14:224–233

    PubMed  CAS  Google Scholar 

  105. Adam J, Polivka M, Kaci R, Godfraind C, Gray F (2010) Hyaline astrocytic inclusions in pediatric epilepsy: report of two cases. Clin Neuropathol 29(4):246–253. doi:7715

    PubMed  CAS  Google Scholar 

  106. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

    Article  PubMed  CAS  Google Scholar 

  107. Chuang YC (2010) Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death. Acta Neurol Taiwan 19(1):3–15. doi:10196099/1913

    PubMed  Google Scholar 

  108. Tateaki Y, Ogawa T, Kawada N, Kohashi T, Arihiro K, Tateno C, Obara M, Yoshizato K (2004) Typing of hepatic nonparenchymal cells using fibulin-2 and cytoglobin/STAP as liver fibrogenesis-related markers. Histochem Cell Biol 122(1):41–49

    Article  PubMed  CAS  Google Scholar 

  109. Li JT, Liao ZX, Ping J, Xu D, Wang H (2008) Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 43(6):419–428. doi:10.1007/s00535-008-2180-y

    Article  PubMed  CAS  Google Scholar 

  110. Bosselut N, Housset C, Marcelo P, Rey C, Burmester T, Vinh J, Vaubourdolle M, Cadoret A, Baudin B (2010) Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts. Proteomics 10(5):1017–1028

    PubMed  CAS  Google Scholar 

  111. Gnainsky Y, Kushnirsky Z, Bilu G, Hagai Y, Genina O, Volpin H, Bruck R, Spira G, Nagler A, Kawada N, Yoshizato K, Reinhardt D, Libermann T, Pines M (2007) Gene expression during chemically induced liver fibrosis: effect of halofuginone on TGF-β signaling. Cell Tissue Res 328(1):153–166

    Article  PubMed  CAS  Google Scholar 

  112. Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232(1):188–191

    Article  PubMed  CAS  Google Scholar 

  113. Farias-Eisner R, Chaudhuri G, Aeberhard E, Fukuto JM (1996) The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem 271(11):6144–6151

    Article  PubMed  CAS  Google Scholar 

  114. Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N (1995) Inactivation of glutathione peroxidase by nitric oxide Implication for cytotoxicity. J Biol Chem 270(36):21035–21039

    Article  PubMed  CAS  Google Scholar 

  115. Rauen U, Li T, Ioannidis I, de Groot H (2007) Nitric oxide increases toxicity of hydrogen peroxide against rat liver endothelial cells and hepatocytes by inhibition of hydrogen peroxide degradation. Am J Physiol Cell Physiol 292(4):C1440–C1449. doi:00366.2006

    Article  PubMed  CAS  Google Scholar 

  116. Kim YM, Bergonia HA, Muller C, Pitt BR, Watkins WD, Lancaster JR Jr (1995) Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 270(11):5710–5713

    Article  PubMed  CAS  Google Scholar 

  117. Lopez-Garcia MP (1998) Endogenous nitric oxide is responsible for the early loss of P450 in cultured rat hepatocytes. FEBS Lett 438(3):145–149. doi:S0014-5793(98)01283-6

    Article  PubMed  CAS  Google Scholar 

  118. Wang J, Lu S, Moenne-Loccoz P, Ortiz de Montellano PR (2003) Interaction of nitric oxide with human heme oxygenase-1. J Biol Chem 278(4):2341–2347. doi:10.1074/jbc.M211131200

    Article  PubMed  CAS  Google Scholar 

  119. Itin PH, Fistarol, Susanna K (2005) Palmoplantar keratodermas. Clin Dermatol 23(1):15–22

    Article  PubMed  Google Scholar 

  120. Risk JM, Mills H, Garde J, Dunn J, Evans K, Hollstein M, Field J (1999) The tylosis esophageal cancer (TOC) locus: more than just a familial cancer gene. Dis Esophagus 12(3):173–176

    Article  PubMed  CAS  Google Scholar 

  121. Langan J, Cole C, Huckle E, Byrne S, McRonald F, Rowbottom L, Ellis A, Shaw J, Leigh I, Kelsell D, Dunham I, Field J, Risk J (2004) Novel microsatellite markers and single nucleotide polymorphisms refine the tylosis with oesophageal cancer (TOC) minimal region on 17q25 to 42.5 kb: sequencing does not identify the causative gene. Hum Genet 114(6):534–540

    Article  PubMed  CAS  Google Scholar 

  122. Presneau N, Dewar K, Forgetta V, Provencher D, Mes-Masson A-M, Tonin PN (2005) Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2. Mol Carcinog 43(3):141–154

    Article  PubMed  CAS  Google Scholar 

  123. Shaw RJ, Hall GL, Woolgar JA, Lowe D, Rogers SN, Field JK, Liloglou T, Risk JM (2007) Quantitative methylation analysis of resection margins and lymph nodes in oral squamous cell carcinoma. Br J Oral Maxillofac Surg 45(8):617–622

    Article  PubMed  Google Scholar 

  124. Hall GL, Shaw RJ, Field EA, Rogers SN, Sutton DN, Woolgar JA, Lowe D, Liloglou T, Field JK, Risk JM (2008) p16 promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomarkers Prev 17(8):2174–2179

    Article  PubMed  CAS  Google Scholar 

  125. Malik K, Brown KW (2000) Epigenetic gene deregulation in cancer. Br J Cancer 83(12):1583–1588

    Article  PubMed  CAS  Google Scholar 

  126. Klaunig JE, Kamendulis LM, Hocevar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38(1):96–109. doi:10.1177/0192623309356453

    Article  PubMed  CAS  Google Scholar 

  127. Yang GY, Taboada S, Liao J (2009) Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 512:119–156. doi:10.1007/978-1-60327-530-9_8

    Article  PubMed  CAS  Google Scholar 

  128. Genin O, Rechavi G, Nagler A, Ben-Itzhak O, Nazemi KJ, Pines M (2008) Myofibroblastin pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment? Neoplasia 10(9):940–948

    PubMed  CAS  Google Scholar 

  129. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  PubMed  CAS  Google Scholar 

  130. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-b in homeostasis and cancer. Nat Rev Cancer 3(11):807–820

    Article  PubMed  CAS  Google Scholar 

  131. Lv Y, Wang Qizhao, Diao Yong, Xu Ruian (2008) Cytoglobin: a novel potential gene medicine for fibrosis and cancer therapy. Curr Gene Ther 8(4):287–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the Roy Castle Lung Cancer Foundation (Liverpool, UK) for financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Xinarianos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleksiewicz, U., Liloglou, T., Field, J.K. et al. Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell. Mol. Life Sci. 68, 3869–3883 (2011). https://doi.org/10.1007/s00018-011-0764-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0764-9

Keywords

Navigation