Skip to main content
Log in

Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This article outlines the need for a homeostatic response to alterations in cellular oxygenation. It describes work on erythropoietin control that led to the discovery of the hypoxia-inducible transcription factor (HIF-1) and the parallel recognition that this system was responsive to a widespread oxygen-sensing mechanism. Subsequently, multiple HIF isoforms have been shown to have overlapping but non-redundant functions, controlling expression of genes involved in diverse processes such as angiogenesis, vascular tone, metal transport, glycolysis, mitochondrial function, cell growth and survival. The major role of prolyl and asparaginyl hydroxylation in regulating HIFs is described, as well as the identification of PHD1-3 and FIH as the oxygen-sensing enzymes responsible for these hydroxylations. Current understanding of other processes that modulate overall HIF activity, including influences from other signalling mechanisms such as kinases and nitric oxide levels, and the existence of a variety of feedback loops are outlined. The effects of some mutations in this pathway are documented as is knowledge of other substrates for these enzymes. The importance of PHD1-3 and FIH, and the large family of 2-oxoglutarate and iron(II)-dependent dioxygenases of which they are a part, in biology and medicine are discussed (part of a multi-author review).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilles-Gonzalez MA, Gonzalez G, Perutz MF (1994) Heme-based sensors, exemplified by the kinas FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry 33:8067–8073

    CAS  PubMed  Google Scholar 

  2. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    CAS  PubMed  Google Scholar 

  3. Zitomer RS, Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56:1–11

    CAS  PubMed  Google Scholar 

  4. Hidalgo E, Ding H, Demple B (1997) Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 88:121–129

    CAS  PubMed  Google Scholar 

  5. Spiro S, Roberts RE, Guest JR (1989) FNR-dependent repression of the ndh gene of Escherichia coli and metal ion requirement for FNR-regulated gene expression. Mol Microbiol 3:601–608

    CAS  PubMed  Google Scholar 

  6. Spiro S, Guest JR (1990) FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev 6:399–428

    CAS  PubMed  Google Scholar 

  7. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    CAS  PubMed  Google Scholar 

  8. Necas E, Neuwirt J (1972) The effect of inhibitors of energy metabolism on erythropoietin production. J Lab Clin Med 79:388–396

    CAS  PubMed  Google Scholar 

  9. Necas E, Thorling EB (1972) Unresponsiveness of erythropoietin-producing cells to cyanide. Am J Physiol 222:1187–1190

    CAS  PubMed  Google Scholar 

  10. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615

    CAS  PubMed  Google Scholar 

  11. Goldwasser E, Jacobson LO, Fried W, Plazk LF (1958) Studies on erythropoiesis V: the effect of cobalt on the production of erythropoietin. Blood 13:55–60

    CAS  PubMed  Google Scholar 

  12. Ho VT, Bunn HF (1996) Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun 223:175–180

    CAS  PubMed  Google Scholar 

  13. Tan CC, Eckardt K-U, Ratcliffe PJ (1991) Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int 40:69–76

    CAS  PubMed  Google Scholar 

  14. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJP, Johnson MH, Ratcliffe PJ (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44:1149–1162

    CAS  PubMed  Google Scholar 

  15. Maxwell PH, Ferguson DJP, Osmond MK, Pugh CW, Heryet A, Doe BG, Johnson MH, Ratcliffe PJ (1994) Expression of a homologously recombined erythropoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. Blood 84:1823–1830

    CAS  PubMed  Google Scholar 

  16. Koury ST, Bondurant MC, Koury MJ (1988) Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71:524–527

    CAS  PubMed  Google Scholar 

  17. Koury ST, Bondurant MC, Koury MJ, Semenza GL (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77:2497–2503

    CAS  PubMed  Google Scholar 

  18. Eckardt K-U, Koury ST, Tan CC, Schuster SJ, Kaissling B, Ratcliffe PJ, Kurtz A (1993) Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int 43:815–823

    CAS  PubMed  Google Scholar 

  19. Bachmann S, Le Hir M, Eckardt K-U (1993) Co-localization of erythropoietin messenger RNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41:335–341

    CAS  PubMed  Google Scholar 

  20. Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    CAS  PubMed  Google Scholar 

  21. Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    CAS  PubMed  Google Scholar 

  22. Wang GL, Semenza GL (1995) Purification and characterisation of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    CAS  PubMed  Google Scholar 

  23. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684

    CAS  PubMed  Google Scholar 

  24. Beck I, Ramirez S, Weinmann R, Caro J (1991) Enhancer element at the 3′-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem 266:15563–15566

    CAS  PubMed  Google Scholar 

  25. Pugh CW, Tan CC, Jones RW, Ratcliffe PJ (1991) Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88:10553–10557

    CAS  PubMed  Google Scholar 

  26. Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc Natl Acad Sci USA 90:2423–2427

    CAS  PubMed  Google Scholar 

  27. Firth JD, Ebert BL, Ratcliffe PJ (1995) Hypoxic regulation of lactate dehydrogenase A: interaction between hypoxia inducible factor 1 and cAMP response elements. J Biol Chem 270:21021–21027

    CAS  PubMed  Google Scholar 

  28. Ebert BL, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem 270:29083–29089

    CAS  PubMed  Google Scholar 

  29. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268:C1362–C1368

    CAS  PubMed  Google Scholar 

  30. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ (1994) Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoeitin 3′ enhancer. Proc Natl Acad Sci USA 91:6496–6500

    CAS  PubMed  Google Scholar 

  31. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    CAS  PubMed  Google Scholar 

  32. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ Res 77:638–643

    CAS  PubMed  Google Scholar 

  33. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, Bell JC (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469–7482

    CAS  PubMed  Google Scholar 

  34. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14:6264–6277

    CAS  PubMed  Google Scholar 

  35. Schmedtje JF Jr, Ji Y-S (1998) Hypoxia and molecular cardiovascular medicine. Trends Cardiovasc Med 8:24–33

    CAS  Google Scholar 

  36. Zampetaki A, Mitsialis SA, Pfeilschifter J, Kourembanas S (2004) Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-κB: the prominent of p42/p44 and PI3 kinase pathways. FASEB J 18:1090–1092

    CAS  PubMed  Google Scholar 

  37. Cummins EP, Comerford KM, Scholz C, Bruning U, Taylor CT (2007) Hypoxic regulation of NF-kappaB signaling. Methods Enzymol 435:479–492

    CAS  PubMed  Google Scholar 

  38. Koditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM (2007) Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110:3610–3617

    PubMed  Google Scholar 

  39. Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate dependent dioxygenase inhibition; the role of HIF-1alpha, HIF-2alpha and other pathways. J Biol Chem 281:15215–15226

    CAS  PubMed  Google Scholar 

  40. Ameri K, Hammond EM, Culmsee C, Raida M, Katschinski DM, Wenger RH, Wagner E, Davis RJ, Hai T, Denko N, Harris AL (2007) Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway. Oncogene 26:284–289

    CAS  PubMed  Google Scholar 

  41. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL (2004) Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103:1876–1882

    CAS  PubMed  Google Scholar 

  42. Zhulin IB, Taylor BL, Dixon R (1997) PAS domain S-boxes in Archaea, bacteria and sensors for oxygen and redox. Trends Biol Sci 22:331–333

    CAS  Google Scholar 

  43. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed  Google Scholar 

  44. Hoffman EC, Reyes H, Chu F-F, Sander F, Conley LH, Brooks BA, Hankinson O (1991) Cloning of a factor required for activity of the Ah (Dioxin) receptor. Science 252:954–958

    CAS  PubMed  Google Scholar 

  45. Reyes H, Reisz-Porszasz S, Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195

    CAS  PubMed  Google Scholar 

  46. Reisz-Porszasz S, Probst MR, Fukunaga BN, Hankinson O (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14:6075–6086

    CAS  PubMed  Google Scholar 

  47. Hankinson O (1995) The aryl hydrocarbon complex. Annu Rev Pharmacol Toxicol 35:307–340

    CAS  PubMed  Google Scholar 

  48. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93:12969–12973

    CAS  PubMed  Google Scholar 

  49. Jiang H, Guo R, Powell-Coffman JA (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98:7916–7921

    CAS  PubMed  Google Scholar 

  50. Bacon NC, Wappner P, O’Rourke JF, Bartlett SM, Shilo B, Pugh CW, Ratcliffe PJ (1998) Regulation of the Drosophila basic helix–loop–helix PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem Biophys Res Commun 249:811–816

    CAS  PubMed  Google Scholar 

  51. Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN, Muzzopappa M, Ratcliffe PJ, Wappner P (2002) Control of the hypoxic reponse in Drosophila melanogaster by the basic helix–loop–helix PAS protein similar. Mol Cell Biol 22:6842–6853

    CAS  PubMed  Google Scholar 

  52. Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S (1997) The Drosophila tango gene ecodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4571–4582

    CAS  PubMed  Google Scholar 

  53. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    CAS  PubMed  Google Scholar 

  54. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    CAS  PubMed  Google Scholar 

  55. Flamme I, Fröhlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix–loop–helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech Dev 63:51–60

    CAS  PubMed  Google Scholar 

  56. Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3α in human kidney: suppression of HIF-mediated gene expression by HIF-3α. Biochem Biophys Res Commun 287:808–813

    CAS  PubMed  Google Scholar 

  57. Maynard MA, Qi H, Chung J, Lee EHL, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M (2003) Multiple splice variants of the human HIF-3α locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278:11032–11040

    CAS  PubMed  Google Scholar 

  58. Heidbreder M, Frohlich F, Johren O, Dendorfer A, Qadri F, Dominiak P (2003) Hypoxia rapidly activates HIF-3α mRNA expression. FASEB J 17:1541–1543

    CAS  PubMed  Google Scholar 

  59. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    CAS  PubMed  Google Scholar 

  60. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J Biol Chem 277:32405–32408

    CAS  PubMed  Google Scholar 

  61. Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, Saijo Y, Gotoh O, Sogawa K, Fujii-Kuriyama Y (1996) cDNA cloning and tissue-specific expression of a novel basic helix–loop–helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 16:1706–1713

    CAS  PubMed  Google Scholar 

  62. Ikeda M, Nomura M (1997) cDNA cloning and tissue-specific expression of a novel basic helix–loop–helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233:258–264

    CAS  PubMed  Google Scholar 

  63. Hogenesch JB, Guy Y–Z, Jain S, Bradfield CA (1998) The basic-helix–loop–helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479

    CAS  PubMed  Google Scholar 

  64. Hogenesch JB, Gu Y–Z, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, Bradfield CA (2000) The basic helix–loop–helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci 20:1–5

    Google Scholar 

  65. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze C, Horstrup JH, Wamecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt K-U (2002) Widespread, hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–273

    PubMed  Google Scholar 

  66. Carver LA, Hogenesch JB, Bradfield CA (1994) Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Res 22:3038–3044

    CAS  PubMed  Google Scholar 

  67. Drutel G, Kathmann M, Heron A, Schwartz J-C, Arrang J-M (1996) Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT). Biochem Biophys Res Commun 225:333–339

    CAS  PubMed  Google Scholar 

  68. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076

    CAS  PubMed  Google Scholar 

  69. Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    CAS  PubMed  Google Scholar 

  70. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    CAS  PubMed  Google Scholar 

  71. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    CAS  PubMed  Google Scholar 

  72. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391

    CAS  PubMed  Google Scholar 

  73. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B, Dewerchin M, Van Veldhoven P, Plate K, Moons L, Collen D, Carmeliet P (2002) Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    CAS  PubMed  Google Scholar 

  74. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan L-J, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1 −/− mice. Nat Genet 35:331–340

    CAS  PubMed  Google Scholar 

  75. Kozak KR, Abbott B, Hankinson O (1997) ARNT-deficient mice and placental differentiation. Dev Biol 191:247–305

    Google Scholar 

  76. Keith B, Adelman DM, Simon MC (2001) Targeted mutation of the murine arhylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci USA 98:6692–6697

    CAS  PubMed  Google Scholar 

  77. Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542

    CAS  PubMed  Google Scholar 

  78. Sowter HM, Raval RR, Moore J, Ratcliffe PJ, Harris AL (2003) Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcription. Cancer Res 63:6130–6134

    CAS  PubMed  Google Scholar 

  79. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2005) Contrasting properties of hypoxia-inducible factor 1 (hif-1) and hif-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    CAS  PubMed  Google Scholar 

  80. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr (2003) Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1:439–444

    CAS  Google Scholar 

  81. Kondo K, Kico J, Nakamura E, Lechpammer M, Kaelin WGJ (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:237–246

    CAS  PubMed  Google Scholar 

  82. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD (2002) The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1:247–255

    CAS  PubMed  Google Scholar 

  83. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1:459–468

    CAS  PubMed  Google Scholar 

  84. Covello KL, Simon MC, Keith B (2005) Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 65:2277–2286

    CAS  PubMed  Google Scholar 

  85. Brusselmans K, Bono F, Maxwell P, Dor Y, Dewerchin M, Collen D, Herbert JM, Carmeliet P (2001) Hypoxia-inducible factor-2α (HIF-2α) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 276:39192–391966

    CAS  PubMed  Google Scholar 

  86. Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW (2007) Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 96:1284–1292

    CAS  PubMed  Google Scholar 

  87. Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM (2006) The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res 66:3688–3698

    CAS  PubMed  Google Scholar 

  88. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11:335–347

    CAS  PubMed  Google Scholar 

  89. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    CAS  PubMed  Google Scholar 

  90. Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 287:808–813

    CAS  PubMed  Google Scholar 

  91. Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA, Simon MC (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319

    CAS  PubMed  Google Scholar 

  92. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α. EMBO J 17:6573–6586

    CAS  PubMed  Google Scholar 

  93. Salceda S, Caro J (1997) Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin–proteasome system under normoxic conditions. J Biol Chem 272:22642–22647

    CAS  PubMed  Google Scholar 

  94. Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J 19:4298–4309

    CAS  PubMed  Google Scholar 

  95. Paltoglou S, Roberts BJ (2007) HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 26:604–609

    CAS  PubMed  Google Scholar 

  96. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    CAS  PubMed  Google Scholar 

  97. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ, Maher ER (2001) Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10:1029–1038

    CAS  PubMed  Google Scholar 

  98. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    CAS  PubMed  Google Scholar 

  99. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    CAS  PubMed  Google Scholar 

  100. Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WGJ (2001) von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 10:1019–1027

    CAS  PubMed  Google Scholar 

  101. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, Liu E, Sergueeva AI, Miasnikova GY, Mole D, Maxwell PH, Stockton DW, Semenza GL, Prchal JT (2002) Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 32:614–621

    CAS  PubMed  Google Scholar 

  102. Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, von Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    CAS  PubMed  Google Scholar 

  103. Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian Y-M, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologues define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    CAS  PubMed  Google Scholar 

  104. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    CAS  PubMed  Google Scholar 

  105. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WGJr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    CAS  PubMed  Google Scholar 

  106. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    CAS  PubMed  Google Scholar 

  107. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–978

    CAS  PubMed  Google Scholar 

  108. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295:858–861

    CAS  PubMed  Google Scholar 

  109. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    CAS  PubMed  Google Scholar 

  110. Hewitson KS, McNeill LA, Riordan MV, Tian Y-M, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ (2002) Hypoxia inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    CAS  PubMed  Google Scholar 

  111. Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ, Schofield CJ (2003) Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J Biol Chem 278:1802–1806

    CAS  PubMed  Google Scholar 

  112. McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ (2006) Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 103:9814–9819

    CAS  PubMed  Google Scholar 

  113. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Science signal 306:re12

    Google Scholar 

  114. Ivan M, Harris AL, Martelli F, Kulshreshtha R (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12:1426–1431

    CAS  PubMed  Google Scholar 

  115. Centanin L, Ratcliffe PJ, Wappner P (2005) Reversion of lethality and growth defects in fatiga oxygen-sensor mutant flies by loss of hypoxia-inducible factor-alpha/sima. EMBO Rep 6:1070–1075

    CAS  PubMed  Google Scholar 

  116. Koivunen P, Tiainen P, Hyvarinen J, Williams KE, Sormunen R, Klaus SJ, Kivirikko KI, Myllyharju J (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282:30544–30552

    CAS  PubMed  Google Scholar 

  117. Lancaster DE, McNeill LA, McDonough MA, Aplin RT, Hewitson KS, Pugh CW, Ratcliffe PJ, Schofield CJ (2004) Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem J 383:429–437

    CAS  PubMed  Google Scholar 

  118. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor HIF. J Biol Chem 278:30772–30780

    PubMed  Google Scholar 

  119. Koivunen P, Hirsila M, Kivirikko KI, Myllyharju J (2006) The length of peptide substrates has a marked effect on hydroxylation by the hypoxia-inducible factor prolyl 4 hydroxylases. J Biol Chem 281:28712–28720

    CAS  PubMed  Google Scholar 

  120. Ehrismann D, Flashman E, Genn DN, Mathioudakis N, Hewitson KS, Ratcliffe PJ, Schofield CJ (2007) Studies on the activity of the hypoxia-inducible factor hydroxylases using an oxygen consumption assay. Biochem J 401:227–234

    CAS  PubMed  Google Scholar 

  121. Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM, Ratcliffe PJ (2004) Genetic analysis of the role of the asparaginyl hydroxylase FIH in regulating HIF transcriptional target genes. J Biol Chem 279:42719–42725

    CAS  PubMed  Google Scholar 

  122. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J 22:4082–4090

    CAS  PubMed  Google Scholar 

  123. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2 and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    CAS  PubMed  Google Scholar 

  124. Tian YM, Mole DR, Ratcliffe PJ, Gleadle JM (2006) Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochem J 397:179–186

    CAS  PubMed  Google Scholar 

  125. Habelhah H, Laine A, Erdjument-Bromage H, Tempst P, Gershwin ME, Bowtell DD, Ronai Z (2004) Regulation of 2-oxoglutarate (alpha-ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. J Biol Chem 279:53782–53788

    CAS  PubMed  Google Scholar 

  126. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117:941–952

    CAS  PubMed  Google Scholar 

  127. Fukuba H, Yamashita H, Nagano Y, Jin HG, Hiji M, Ohtsuki T, Takahashi T, Kohriyama T, Matsumoto M (2007) Siah-1 facilitates ubiquitination and degradation of factor inhibiting HIF-1alpha (FIH). Biochem Biophys Res Commun 353:324–329

    CAS  PubMed  Google Scholar 

  128. Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F, Katschinski DM, Stiehl DP, Wenger RH, Camenisch G (2007) The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol Cell Biol 27:3758–3768

    CAS  PubMed  Google Scholar 

  129. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ (2003) Effect of ascorbate on the activity of hypoxia inducible factor (HIF) in cancer cells. Cancer Res 63:1764–1768

    CAS  PubMed  Google Scholar 

  130. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Lineham M, Neckers L (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153

    CAS  PubMed  Google Scholar 

  131. Ginouves A, Ilc K, Macias N, Pouyssegur J, Berra E (2008) PHDs overactivation during chronic hypoxia “desensitizes” HIFalpha and protects cells from necrosis. Proc Natl Acad Sci USA 105:4745–4750

    CAS  PubMed  Google Scholar 

  132. Wax SD, Tsao L, Lieb ME, Fallon JT, Taubman MB (1996) SM-20 is a novel 40-kd protein whose expression in the arterial wall is restricted to smooth muscle. Lab Invest 74:797–808

    CAS  PubMed  Google Scholar 

  133. Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, Wiesener M, Ratcliffe PJ, Eckardt KU, Pugh CW (2006) HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol 41:68–77

    CAS  PubMed  Google Scholar 

  134. Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Burgel T, Jelkmann W, Acker H, Fandrey J (2002) Intracellular localisation of human HIF-1α hydroylases: implications for oxygen sensing. J Cell Sci 116:1319–1326

    Google Scholar 

  135. Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, McMullin MF, Lee FS (2006) A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA 103:654–659

    CAS  PubMed  Google Scholar 

  136. Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS (2007) A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110:2193–2196

    CAS  PubMed  Google Scholar 

  137. Takeda K, Ho V, Takeda H, Duan LJ, Nagy A, Fong GH (2006) Placental but not heart defect is associated with elevated hif{alpha} levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26:8336–8346

    CAS  PubMed  Google Scholar 

  138. Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111:3236–3244

    CAS  PubMed  Google Scholar 

  139. Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180

    CAS  PubMed  Google Scholar 

  140. Bishop T, Gallagher D, Pascual A, Lygate CA, de Bono JP, Nicholls LG, Ortega-Saenz P, Oster H, Wijeyekoon B, Sutherland AI, Grosfeld A, Aragones J, Schneider M, van Geyte K, Teixeira D, Diez-Juan A, Lopez-Barneo J, Channon KM, Maxwell PH, Pugh CW, Davies AM, Carmeliet P, Ratcliffe PJ (2008) Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol Cell Biol 28:3386–3400

    CAS  PubMed  Google Scholar 

  141. Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC, Czyzyk-Krzeska MF (2003) von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA 100:2706–2711

    CAS  PubMed  Google Scholar 

  142. Mikhaylova O, Ignacak ML, Barankiewicz TJ, Harbaugh SV, Yi Y, Maxwell PH, Schneider M, Van Geyte K, Carmeliet P, Revelo MP, Wyder M, Greis KD, Meller J, Czyzyk-Krzeska MF (2008) The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 28:2701–2717

    CAS  PubMed  Google Scholar 

  143. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates I{kappa}B kinase-beta, giving insight into hypoxia-induced NF{kappa}B activity. Proc Natl Acad Sci USA 103:18154–18159

    CAS  PubMed  Google Scholar 

  144. Xie L, Xiao K, Whalen EJ, Forrester MT, Freeman RS, Fong G, Gygi SP, Lefkowitz RJ, Stamler JS (2009) Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by VHL. Sci Signal 2:ra33

    Google Scholar 

  145. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in I{kappa}B proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103:14767–14772

    CAS  PubMed  Google Scholar 

  146. Coleman ML, McDonough MA, Hewitson KS, Coles C, Mecinovic J, Edelmann M, Cook KM, Cockman ME, Lancaster DE, Kessler BM, Oldham NJ, Ratcliffe PJ, Schofield CJ (2007) Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J Biol Chem 282:24027–24038

    CAS  PubMed  Google Scholar 

  147. Ferguson JE 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C (2007) ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol 27:6407–6419

    CAS  PubMed  Google Scholar 

  148. Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S, Bilton RL, Brismar K, Whitelaw ML, Pereira T, Gorman JJ, Ericson J, Peet DJ, Lendahl U, Poellinger L (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105:3368–3373

    CAS  PubMed  Google Scholar 

  149. Gradin K, Takasaki C, Fujii-Kuriyama Y, Sogawa K (2002) The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J Biol Chem 277:23508–23514

    CAS  PubMed  Google Scholar 

  150. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) Mitogen-activated protein kinase (MAPK) signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278:14013–14019

    CAS  PubMed  Google Scholar 

  151. Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A, Georgatsou E, Bonanou S, Simos G (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281:33095–33106

    CAS  PubMed  Google Scholar 

  152. Mylonis I, Chachami G, Paraskeva E, Simos G (2008) An atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor HIF-1alpha by MAPK. J Biol Chem 283:27620–27627

    CAS  PubMed  Google Scholar 

  153. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kalin WGJ (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147–157

    CAS  PubMed  Google Scholar 

  154. Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6:7–10

    CAS  PubMed  Google Scholar 

  155. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    CAS  PubMed  Google Scholar 

  156. Jeong J-W, Bae M–K, Ahn M-Y, Kim S–H, Sohn T-K, Bae M-H, Yoo M-A, Song EJ, Lee K-J, Kim K-W (2002) Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 111:709–720

    CAS  PubMed  Google Scholar 

  157. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, Kim KW (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324:394–400

    CAS  PubMed  Google Scholar 

  158. Fisher TS, Etages SD, Hayes L, Crimin K, Li B (2005) Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem 280:17749–17757

    CAS  PubMed  Google Scholar 

  159. Bilton R, Mazure N, Trottier E, Hattab M, Dery MA, Richard DE, Pouyssegur J, Brahimi-Horn MC (2005) ARD1, an acetyltransferase, does not alter stability of hypoxia-inducible factor-1alpha and is not induced by hypoxia or HIF. J Biol Chem 280:31132–31140

    CAS  PubMed  Google Scholar 

  160. Arnesen T, Kong X, Evjenth R, Gromyko D, Varhaug JE, Lin Z, Sang N, Caro J, Lillehaug JR (2005) Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett 579:6428–6432

    CAS  PubMed  Google Scholar 

  161. Berta MA MN, Hattab M, Pouysségur J, Brahimi-Horn MC (2007) SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem Biophys Res Commun 360:646–652

    PubMed  Google Scholar 

  162. Cash TP, Pan Y, Simon MC (2007) Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 43:1219–1225

    CAS  PubMed  Google Scholar 

  163. Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H, Fujii-Kuriyama Y (1998) Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA 95:7368–7373

    CAS  PubMed  Google Scholar 

  164. Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor 1α by the inflammatory mediators nitric oxide and tumor necrosis factor-α in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276:39805–39811

    CAS  PubMed  Google Scholar 

  165. Wang F, Sekine H, Kikuchi Y, Takasaki C, Miura C, Heiwa O, Shuin T, Fujii-Kuriyama Y, Sogawa K (2002) HIF-1a-prolyl hydroxylase: molecular target of nitric oxide in the hypoxic signal transduction pathway. Biochem Biophys Res Commun 295:657–662

    CAS  PubMed  Google Scholar 

  166. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470–3481

    CAS  PubMed  Google Scholar 

  167. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282:1788–1796

    CAS  PubMed  Google Scholar 

  168. Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF-1α. Science 302:1975–1978

    CAS  PubMed  Google Scholar 

  169. Baek JH, Mahon PC, Oh J, Kelly B, Krishnamachary B, Pearson M, Chan DA, Giaccia AJ, Semenza GL (2005) OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Molecular Cell 17:503–512

    CAS  PubMed  Google Scholar 

  170. Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 102:7481–7486

    CAS  PubMed  Google Scholar 

  171. Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G (2006) The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem 281:8645–8655

    CAS  PubMed  Google Scholar 

  172. Masson N, Appelhoff RJ, Tuckerman JR, Tian YM, Demol H, Puype M, Vandekerckhove J, Ratcliffe PJ, Pugh CW (2004) The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Lett 570:166–170

    CAS  PubMed  Google Scholar 

  173. Bracken CP, Whitelaw ML, Peet DJ (2005) Activity of hypoxia-inducible factor 2 alpha (HIF-2 alpha) is regulated by association with the NF-kappa B essential modulator (NEMO/IKK gamma). J Biol Chem 280:14240–14251

    CAS  PubMed  Google Scholar 

  174. Bhattacharya S, Michels CL, Leung M–K, Arany ZP, Kung AL, Livingston DM (1999) Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev 13:64–75

    CAS  PubMed  Google Scholar 

  175. Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP, Barclay E, Calonje E, Manek S, Adams SJ, Bowers PW, Burrows NP, Charles-Holmes R, Cook LJ, Daly BM, Ford GP, Fuller LC, Hadfield-Jones SE, Hardwick N, Highet AS, Keefe M, MacDonald-Hull SP, Potts EDA, Crone M, Wilkinson S, Camacho-Martinez F, Jablonska S, Ratnavel R, MacDonald A, Mann RJ, Grice K, Guillet G, Lewis-Jones MS, McGrath H, Seukeran DC, Morrison PJ, Fleming S, Rahman S, Kelsell D, Leigh I, Olpin S, Tomlinson IPM (2003) Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, heritary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12:1241–1252

    CAS  PubMed  Google Scholar 

  176. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    CAS  PubMed  Google Scholar 

  177. Pollard PJ, Spencer-Dene B, Shukla D, Howarth K, Nye E, El-Bahrawy M, Deheragoda M, Joannou M, MacDonald S, Martin A, Igarashi P, Varsani-Brown S, Rosewell I, Poulsom R, Maxwell PH, Stamp GW, Tomlinson IP (2007) Targeted inactivation of Fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 11:311–319

    CAS  PubMed  Google Scholar 

  178. Thrash-Bingham CA, Tartof KD (1999) aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91:143–151

    CAS  PubMed  Google Scholar 

  179. Semenza GL (2001) Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49:614–617

    CAS  PubMed  Google Scholar 

  180. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    CAS  PubMed  Google Scholar 

  181. Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1a/VP16 hybrid transcription factor. Circulation 102:2255–22561

    CAS  PubMed  Google Scholar 

  182. Shyu KG, Wang MT, Wang BW, Chang CC, Leu JG, Kuan P, Chang H (2002) Intramyocardial injection of naked DNA encoding HIF-1α/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54:576–583

    CAS  PubMed  Google Scholar 

  183. Philipp S, Cui L, Ludolph B, Kelm M, Schulz R, Cohen MV, Downey JM (2006) Desferoxamine and ethyl-3, 4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. Am J Physiol Heart Circ Physiol 290:H450–H457

    CAS  PubMed  Google Scholar 

  184. Xi L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287:H2369–H2375

    CAS  PubMed  Google Scholar 

  185. Nwogu NI, Greenen D, Bean M, Brenner MC, Huang X, Buttrick PM (2001) Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104:2216–2221

    CAS  PubMed  Google Scholar 

  186. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99:13459–13464

    CAS  PubMed  Google Scholar 

  187. Warnecke C, Griethe W, Weidemann A, Jurgensen JS, Willam C, Bachmann S, Ivashchenko Y, Wagner I, Frei U, Wiesener M, Eckardt KU (2003) Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 17:1186–1188

    CAS  PubMed  Google Scholar 

  188. Milkiewicz M, Pugh CW, Egginton S (2004) Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J Physiol 560:21–26

    CAS  PubMed  Google Scholar 

  189. Philipp S, Jurgensen JS, Fielitz J, Bernhardt WM, Weidemann A, Schiche A, Pilz B, Dietz R, Regitz-Zagrosek V, Eckardt KU, Willenbrock R (2006) Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur J Heart Fail 8:347–354

    CAS  PubMed  Google Scholar 

  190. Bernhardt WM, Campean V, Kany S, Jurgensen JS, Weidemann A, Warnecke C, Arend M, Klaus S, Gunzler V, Amann K, Willam C, Wiesener MS, Eckardt KU (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 17:1970–1978

    CAS  PubMed  Google Scholar 

  191. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6:1335–1340

    CAS  PubMed  Google Scholar 

  192. Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM (2004) Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6:33–43

    CAS  PubMed  Google Scholar 

  193. Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66:6264–6270

    CAS  PubMed  Google Scholar 

  194. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420

    CAS  PubMed  Google Scholar 

  195. Aravind L, Koonin EV (2001) The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol 2:RESEARCH0007

    CAS  PubMed  Google Scholar 

  196. Hewitson KS, Granatino N, Welford RW, McDonough MA, Schofield CJ (2005) Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling. Philos Transact A Math Phys Eng Sci 363:807–828

    CAS  PubMed  Google Scholar 

  197. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B (2002) Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA 99:16660–16665

    CAS  PubMed  Google Scholar 

  198. Trewick SC, McLaughlin PJ, Allshire RC (2005) Methylation: lost in hydroxylation? EMBO Rep 6:315–320

    CAS  PubMed  Google Scholar 

  199. Valegard K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Structure of a cephalosporin synthase. Nature 394:805–809

    CAS  PubMed  Google Scholar 

  200. Kivirikko KI, Myllyla R (1980) The hydroxylation of prolyl and lysyl residues. In: Freeman RB, Hawkins HC (eds) The enzymology of post-translational modification of proteins. Academic Press, London, pp 53–104

    Google Scholar 

  201. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, Galvanovskis J, Rorsman P, Robins P, Prieur X, Coll AP, Ma M, Jovanovic Z, Farooqi IS, Sedgwick B, Barroso I, Lindahl T, Ponting CP, Ashcroft FM, O’Rahilly S, Schofield CJ (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Sciencexpress 318:1469–1472

    CAS  Google Scholar 

  202. Mukherji M, Chien W, Kershaw NJ, Clifton IJ, Schofield CJ, Wierzbicki AS, Lloyd MD (2001) Structure–function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Genet 10:1971–1982

    CAS  PubMed  Google Scholar 

  203. Wierzbicki AS, Mitchell J, Lambert-Hammill M, Hancock M, Greenwood J, Sidey MC, de Belleroche J, Gibberd FB (2000) Identification of genetic heterogeneity in Refsum’s disease. Eur J Hum Genet 8:649–651

    CAS  PubMed  Google Scholar 

  204. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481

    CAS  PubMed  Google Scholar 

  205. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    CAS  PubMed  Google Scholar 

  206. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313

    CAS  PubMed  Google Scholar 

  207. Hulse JD, Ellis SR, Henderson LM (1978) Carnitine biosynthesis beta-hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem 253:1654–1659

    CAS  PubMed  Google Scholar 

  208. Lindblad B, Lindstedt G, Tofft M, Lindstedt S (1969) The mechanism of alpha-ketoglutarate oxidation in coupled enzymatic reactions. J Am Chem Soc 91:4604–4606

    CAS  Google Scholar 

  209. Lindstedt G, Lindstedt S (1970) Co-factor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem 245:4178–4186

    CAS  PubMed  Google Scholar 

  210. Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    CAS  PubMed  Google Scholar 

  211. Hanson ES, Rawlins ML, Leibold EA (2003) Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 278:40337–40342

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge many uncited contributions from co-workers in the field and helpful discussions with those involved now, and in the past, with oxygen-sensing research in Oxford. Work in the authors’ laboratory has been funded by the Wellcome Trust, MRC, CRUK, BHF, European Commission and a Fellowship to MC from Jesus College, Oxford. CWP is a scientific co-founder of ReOx Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Pugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, J.D., Coleman, M.L. & Pugh, C.W. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell. Mol. Life Sci. 66, 3539–3554 (2009). https://doi.org/10.1007/s00018-009-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0147-7

Keywords

Navigation