Skip to main content
Log in

Microbial thermosensors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Temperature is among the most important of the parameters that free-living microbes monitor. Microbial physiology needs to be readjusted in response to sudden temperature changes. When the ambient temperature rises or drops to potentially harmful levels, cells mount protective stress responses—so-called heat or cold shock responses, respectively. Pathogenic microorganisms often respond to a temperature of around 37°C by inducing virulence gene expression. There are two main ways in which temperature can be measured. Often, the consequences of a sudden temperature shift are detected. Such indirect signals are known to be the accumulation of denatured proteins (heat shock) or stalled ribosomes (cold shock). However, this article focuses solely on direct thermosensors. Since the conformation of virtually every biomolecule is susceptible to temperature changes, primary sensors include DNA, RNA, proteins and lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guisbert E, Yura T, Rhodius VA, Gross CA (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554

    Article  PubMed  CAS  Google Scholar 

  2. Zhao K, Liu M, Burgess RR (2005) The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. J Biol Chem 280:17758–17768

    Article  PubMed  CAS  Google Scholar 

  3. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789

    Article  PubMed  CAS  Google Scholar 

  4. Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJ, Struhl K, Nudler E (2006) Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 13:806–814

    Article  PubMed  CAS  Google Scholar 

  5. Meibom KL, Dubail I, Dupuis M, Barel M, Lenco J, Stulik J, Golovliov I, Sjostedt A, Charbit A (2008) The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 67:1384–1401

    Article  PubMed  CAS  Google Scholar 

  6. Schumann W (2007) Thermosensors in eubacteria: role and evolution. J Biosci 32:549–557

    Article  PubMed  CAS  Google Scholar 

  7. Huston WM, Theodoropoulos C, Mathews SA, Timms P (2008) Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol 8:190

    Article  PubMed  CAS  Google Scholar 

  8. Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2:157–166

    Article  PubMed  CAS  Google Scholar 

  9. Jin S, Song YN, Deng WY, Gordon MP, Nester EW (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835

    PubMed  CAS  Google Scholar 

  10. Banta LM, Bohne J, Lovejoy SD, Dostal K (1998) Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J Bacteriol 180:6597–6606

    PubMed  CAS  Google Scholar 

  11. Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717

    PubMed  CAS  Google Scholar 

  12. Wei ZM, Sneath BJ, Beer SV (1992) Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol 174:1875–1882

    PubMed  CAS  Google Scholar 

  13. van Dijk K, Fouts DE, Rehm AH, Hill AR, Collmer A, Alfano JR (1999) The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. J Bacteriol 181:4790–4797

    PubMed  Google Scholar 

  14. Lanham PG, Mcllravey KI, Perombelon MCM (1991) Production of cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27°C and 30°C. J Appl Microbiol 70:20–24

    Article  CAS  Google Scholar 

  15. Smirnova A, Li H, Weingart H, Aufhammer S, Burse A, Finis K, Schenk A, Ullrich MS (2001) Thermoregulated expression of virulence factors in plant-associated bacteria. Arch Microbiol 176:393–399

    Article  PubMed  CAS  Google Scholar 

  16. Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913

    Article  PubMed  CAS  Google Scholar 

  17. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470

    Article  PubMed  CAS  Google Scholar 

  18. El-Sharoud WM, Graumann PL (2007) Cold shock proteins aid coupling of transcription and translation in bacteria. Sci Prog 90:15–27

    Article  PubMed  CAS  Google Scholar 

  19. Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8

    Article  PubMed  CAS  Google Scholar 

  20. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  PubMed  CAS  Google Scholar 

  21. Lopez-Garcia P, Forterre P (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22:738–746

    Article  PubMed  CAS  Google Scholar 

  22. Kataoka K, Mizushima T, Ogata Y, Miki T, Sekimizu K (1996) Heat shock-induced DNA relaxation in vitro by DNA gyrase of Escherichia coli in the presence of ATP. J Biol Chem 271:24806–24810

    Article  PubMed  CAS  Google Scholar 

  23. Mizushima T, Kataoka K, Ogata Y, Inoue R, Sekimizu K (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 23:381–386

    Article  PubMed  CAS  Google Scholar 

  24. Lopez-Garcia P, Forterre P (1997) DNA topology in hyperthermophilic archaea: reference states and their variation with growth phase, growth temperature, and temperature stresses. Mol Microbiol 23:1267–1279

    Article  PubMed  CAS  Google Scholar 

  25. Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    Article  PubMed  CAS  Google Scholar 

  26. Dorman CJ (1996) Flexible response: DNA supercoiling, transcription and bacterial adaptation to environmental stress. Trends Microbiol 4:214–216

    Article  PubMed  CAS  Google Scholar 

  27. Dorman CJ, Corcoran CP (2008) Bacterial DNA topology and infectious disease. Nucleic Acids Res 37:672–678

    Article  PubMed  CAS  Google Scholar 

  28. Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP (1998) Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci USA 95:15218–15222

    Article  PubMed  CAS  Google Scholar 

  29. Katayama S, Matsushita O, Tamai E, Miyata S, Okabe A (2001) Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett 509:235–238

    Article  PubMed  CAS  Google Scholar 

  30. Mizuno T (1987) Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures. Nucleic Acids Res 15:6827–6841

    Article  PubMed  CAS  Google Scholar 

  31. Nickerson CA, Achberger EC (1995) Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 177:5756–5761

    PubMed  CAS  Google Scholar 

  32. Katayama S, Matsushita O, Jung CM, Minami J, Okabe A (1999) Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 18:3442–3450

    Article  PubMed  CAS  Google Scholar 

  33. Los DA (2004) The effect of low-temperature-induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol Biol (Noisy-le-Grand) 50:605–612

    Google Scholar 

  34. Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 51:523–537

    Article  PubMed  CAS  Google Scholar 

  35. Tupper AE, Owen-Hughes TA, Ussery DW, Santos DS, Ferguson DJ, Sidebotham JM, Hinton JC, Higgins CF (1994) The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J 13:258–268

    PubMed  CAS  Google Scholar 

  36. Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17:7033–7043

    Article  PubMed  CAS  Google Scholar 

  37. Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JC, Ladbury JE (2005) H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 391:203–213

    Article  PubMed  CAS  Google Scholar 

  38. Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17

    Article  PubMed  CAS  Google Scholar 

  39. Colonna B, Casalino M, Fradiani PA, Zagaglia C, Naitza S, Leoni L, Prosseda G, Coppo A, Ghelardini P, Nicoletti M (1995) H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol 177:4703–4712

    PubMed  CAS  Google Scholar 

  40. Rohde JR, Luan XS, Rohde H, Fox JM, Minnich SA (1999) The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C. J Bacteriol 181:4198–4204

    PubMed  CAS  Google Scholar 

  41. Madrid C, Nieto JM, Paytubi S, Falconi M, Gualerzi CO, Juarez A (2002) Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin. J Bacteriol 184:5058–5066

    Article  PubMed  CAS  Google Scholar 

  42. Dorman CJ, Porter ME (1998) The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 29:677–684

    Article  PubMed  CAS  Google Scholar 

  43. Tobe T, Yoshikawa M, Mizuno T, Sasakawa C (1993) Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 175:6142–6149

    PubMed  CAS  Google Scholar 

  44. White-Ziegler CA, Davis TR (2009) Genome-wide identification of H-NS-controlled, temperature-regulated genes in Escherichia coli K-12. J Bacteriol 191:1106–1110

    Article  PubMed  CAS  Google Scholar 

  45. Goransson M, Sonden B, Nilsson P, Dagberg B, Forsman K, Emanuelsson K, Uhlin BE (1990) Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 344:682–685

    Article  PubMed  CAS  Google Scholar 

  46. White-Ziegler CA, Angus Hill ML, Braaten BA, van der Woude MW, Low DA (1998) Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol Microbiol 28:1121–1137

    Article  PubMed  CAS  Google Scholar 

  47. Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BK (2007) Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 282:34077–34084

    Article  PubMed  CAS  Google Scholar 

  48. Mitobe J, Morita-Ishihara T, Ishihama A, Watanabe H (2008) Involvement of RNA-binding protein Hfq in the post-transcriptional regulation of invE gene expression in Shigella sonnei. J Biol Chem 283:5738–5747

    Article  PubMed  CAS  Google Scholar 

  49. Storz G (1999) An RNA thermometer. Genes Dev 13:633–636

    Article  PubMed  CAS  Google Scholar 

  50. Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30:3–16

    Article  PubMed  CAS  Google Scholar 

  51. Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    Article  PubMed  CAS  Google Scholar 

  52. Narberhaus F, Käser R, Nocker A, Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323

    Article  PubMed  CAS  Google Scholar 

  53. Nocker A, Krstulovic NP, Perret X, Narberhaus F (2001) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176:44–51

    Article  PubMed  CAS  Google Scholar 

  54. Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F (2005) RNA thermometers are common in alpha- and gamma-proteobacteria. Biol Chem 386:1279–1286

    Article  PubMed  CAS  Google Scholar 

  55. Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Article  PubMed  CAS  Google Scholar 

  56. Chowdhury S, Ragaz C, Kreuger E, Narberhaus F (2003) Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 278:47915–47921

    Article  PubMed  CAS  Google Scholar 

  57. Chowdhury S, Maris C, Allain FHT, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25:2487–2497

    Article  PubMed  CAS  Google Scholar 

  58. Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (2007) FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424

    Article  PubMed  CAS  Google Scholar 

  59. Hoe NP, Goguen JD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175:7901–7909

    PubMed  CAS  Google Scholar 

  60. Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561

    Article  PubMed  Google Scholar 

  61. Waldminghaus T, Gaubig LC, Narberhaus F (2007) Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics 278:555–564

    Article  PubMed  CAS  Google Scholar 

  62. Waldminghaus T, Kortmann J, Gesing S, Narberhaus F (2008) Generation of synthetic RNA-based thermosensors. Biol Chem 389:1319–1326

    Article  PubMed  CAS  Google Scholar 

  63. Wieland M, Hartig JS (2007) RNA quadruplex-based modulation of gene expression. Chem Biol 14:757–763

    Article  PubMed  CAS  Google Scholar 

  64. Neupert J, Karcher D, Bock R (2008) Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 36:e124

    Article  PubMed  CAS  Google Scholar 

  65. Altuvia S, Kornitzer D, Teff D, Oppenheim AB (1989) Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 210:265–280

    Article  PubMed  CAS  Google Scholar 

  66. Yamanaka K, Mitta M, Inouye M (1999) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181:6284–6291

    PubMed  CAS  Google Scholar 

  67. Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37°C by mRNA stabilization. Mol Microbiol 23:355–364

    Article  PubMed  CAS  Google Scholar 

  68. Uppal S, Akkipeddi VS, Jawali N (2008) Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5′-untranslated region. FEMS Microbiol Lett 279:83–91

    Article  PubMed  CAS  Google Scholar 

  69. Lybecker MC, Samuels DS (2007) Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64:1075–1089

    Article  PubMed  CAS  Google Scholar 

  70. Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000

    PubMed  CAS  Google Scholar 

  71. Repoila F, Gottesman S (2003) Temperature sensing by the dsrA promoter. J Bacteriol 185:6609–6614

    Article  PubMed  CAS  Google Scholar 

  72. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  73. Servant P, Grandvalet C, Mazodier P (2000) The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. Proc Natl Acad Sci USA 97:3538–3543

    Article  PubMed  CAS  Google Scholar 

  74. Servant P, Mazodier P (2001) Negative regulation of the heat shock response in Streptomyces. Arch Microbiol 176:237–242

    Article  PubMed  CAS  Google Scholar 

  75. Hurme R, Berndt KD, Normark SJ, Rhen M (1997) A proteinaceous gene regulatory thermometer in Salmonella. Cell 90:55–64

    Article  PubMed  CAS  Google Scholar 

  76. Gal-Mor O, Valdez Y, Finlay BB (2006) The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect 8:2154–2162

    Article  PubMed  CAS  Google Scholar 

  77. Naik RR, Kirkpatrick SM, Stone MO (2001) The thermostability of an alpha-helical coiled-coil protein and its potential use in sensor applications. Biosens Bioelectron 16:1051–1057

    Article  PubMed  CAS  Google Scholar 

  78. Liu W, Vierke G, Wenke AK, Thomm M, Ladenstein R (2007) Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. J Mol Biol 369:474–488

    Article  PubMed  CAS  Google Scholar 

  79. Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53:186–209

    PubMed  CAS  Google Scholar 

  80. Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885

    Article  PubMed  CAS  Google Scholar 

  81. Nemecek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    Article  PubMed  CAS  Google Scholar 

  82. Beier D, Gross R (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9:143–152

    Article  PubMed  CAS  Google Scholar 

  83. Calva E, Oropeza R (2006) Two-component signal transduction systems, environmental signals, and virulence. Microb Ecol 51:166–176

    Article  PubMed  CAS  Google Scholar 

  84. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  85. Braun Y, Smirnova AV, Weingart H, Schenk A, Ullrich MS (2007) A temperature-sensing histidine kinase: function, genetics, and membrane topology. Methods Enzymol 423:222–249

    Article  PubMed  CAS  Google Scholar 

  86. Hunger K, Beckering CL, Marahiel MA (2004) Genetic evidence for the temperature-sensing ability of the membrane domain of the Bacillus subtilis histidine kinase DesK. FEMS Microbiol Lett 230:41–46

    Article  PubMed  CAS  Google Scholar 

  87. Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244

    Article  PubMed  CAS  Google Scholar 

  88. Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol 46:905–915

    Article  PubMed  CAS  Google Scholar 

  89. Budde IP, Ullrich MS (2000) Interactions of Pseudomonas syringae pv. glycinea with host and nonhost plants in relation to temperature and phytotoxin synthesis. Mol Plant Microbe Interact 13:951–961

    Article  PubMed  CAS  Google Scholar 

  90. Mittal S, Davis KR (1995) Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8:165–171

    PubMed  CAS  Google Scholar 

  91. Ullrich M, Penaloza-Vazquez A, Bailey AM, Bender CL (1995) A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 177:6160–6169

    PubMed  CAS  Google Scholar 

  92. Smirnova AV, Braun Y, Ullrich MS (2008) Site-directed mutagenesis of the temperature-sensing histidine protein kinase CorS from Pseudomonas syringae. FEMS Microbiol Lett 283:231–238

    Article  PubMed  CAS  Google Scholar 

  93. Rangaswamy V, Bender CL (2000) Phosphorylation of CorS and CorR, regulatory proteins that modulate production of the phytotoxin coronatine in Pseudomonas syringae. FEMS Microbiol Lett 193:13–18

    Article  PubMed  CAS  Google Scholar 

  94. Guschina IA, Harwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483

    Article  PubMed  CAS  Google Scholar 

  95. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  PubMed  CAS  Google Scholar 

  96. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691

    Article  PubMed  CAS  Google Scholar 

  97. Albanesi D, Mansilla MC, de Mendoza D (2004) The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186:2655–2663

    Article  PubMed  CAS  Google Scholar 

  98. Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D (2004) Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 279:39340–39347

    Article  PubMed  CAS  Google Scholar 

  99. Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235

    Article  PubMed  CAS  Google Scholar 

  100. Los DA, Murata N (1999) Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol 1:221–230

    PubMed  CAS  Google Scholar 

  101. Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  PubMed  CAS  Google Scholar 

  102. Kanesaki Y, Yamamoto H, Paithoonrangsarid K, Shoumskaya M, Suzuki I, Hayashi H, Murata N (2007) Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J 49:313–324

    Article  PubMed  CAS  Google Scholar 

  103. Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  PubMed  CAS  Google Scholar 

  104. Horvath I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci USA 95:3513–3518

    Article  PubMed  CAS  Google Scholar 

  105. Horvath I, Multhoff G, Sonnleitner A, Vigh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1664

    Article  PubMed  CAS  Google Scholar 

  106. Tuominen I, Pollari M, Tyystjarvi E, Tyystjarvi T (2006) The SigB sigma factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 580:319–323

    Article  PubMed  CAS  Google Scholar 

  107. Nara T, Lee L, Imae Y (1991) Thermosensing ability of Trg and Tap chemoreceptors in Escherichia coli. J Bacteriol 173:1120–1124

    PubMed  CAS  Google Scholar 

  108. Mizuno T, Imae Y (1984) Conditional inversion of the thermoresponse in Escherichia coli. J Bacteriol 159:360–367

    PubMed  CAS  Google Scholar 

  109. Maeda K, Imae Y (1979) Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci USA 76:91–95

    Google Scholar 

  110. Salman H, Libchaber A (2007) A concentration-dependent switch in the bacterial response to temperature. Nat Cell Biol 9:1098–1100

    Article  PubMed  CAS  Google Scholar 

  111. Nishiyama S, Maruyama IN, Homma M, Kawagishi I (1999) Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region. J Mol Biol 286:1275–1284

    Article  PubMed  CAS  Google Scholar 

  112. Nishiyama SI, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol 32:357–365

    Article  PubMed  CAS  Google Scholar 

  113. Nishiyama S, Nara T, Homma M, Imae Y, Kawagishi I (1997) Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine. J Bacteriol 179:6573–6580

    PubMed  CAS  Google Scholar 

  114. Fischetti VA, Jones KF, Hollingshead SK, Scott JR (1988) Structure, function, and genetics of streptococcal M protein. Rev Infect Dis 10(Suppl 2):S356–S359

    Google Scholar 

  115. Cedervall T, Johansson MU, Akerstrom B (1997) Coiled-coil structure of group A streptococcal M proteins. Different temperature stability of class A and C proteins by hydrophobic–nonhydrophobic amino acid substitutions at heptad positions a and d. Biochemistry 36:4987–4994

    Article  PubMed  CAS  Google Scholar 

  116. Winter J, Jakob U (2004) Beyond transcription—new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol 39:297–317

    Article  PubMed  CAS  Google Scholar 

  117. McCarty JS, Walker GC (1991) DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci USA 88:9513–9517

    Article  PubMed  CAS  Google Scholar 

  118. Grimshaw JP, Jelesarov I, Schönfeld HJ, Christen P (2001) Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system. J Biol Chem 276:6098–6104

    Article  PubMed  CAS  Google Scholar 

  119. Harrison C (2003) GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218–224

    Article  PubMed  CAS  Google Scholar 

  120. Gelinas AD, Toth J, Bethoney KA, Langsetmo K, Stafford WF, Harrison CJ (2003) Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor. Biochemistry 42:9050–9059

    Article  PubMed  CAS  Google Scholar 

  121. Siegenthaler RK, Christen P (2006) Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. J Biol Chem 281:34448–34456

    Article  PubMed  CAS  Google Scholar 

  122. Groemping Y, Reinstein J (2001) Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. J Mol Biol 314:167–178

    Article  PubMed  CAS  Google Scholar 

  123. Groemping Y, Klostermeier D, Herrmann C, Veit T, Seidel R, Reinstein J (2001) Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. J Mol Biol 305:1173–1183

    Article  PubMed  CAS  Google Scholar 

  124. Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 13:2823–2839

    Article  PubMed  CAS  Google Scholar 

  125. Willmund F, Muhlhaus T, Wojciechowska M, Schroda M (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J Biol Chem 282:11317–11328

    Google Scholar 

  126. Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  PubMed  CAS  Google Scholar 

  127. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  PubMed  CAS  Google Scholar 

  128. Franzmann TM, Menhorn P, Walter S, Buchner J (2008) Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol Cell 29:207–216

    Article  PubMed  CAS  Google Scholar 

  129. Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–455

    Article  PubMed  CAS  Google Scholar 

  130. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347

    Article  PubMed  CAS  Google Scholar 

  131. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459

    Article  PubMed  CAS  Google Scholar 

  132. Krojer T, Sawa J, Schafer E, Saibil HR, Ehrmann M, Clausen T (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453:885–890

    Article  PubMed  CAS  Google Scholar 

  133. Kim DY, Kwon E, Shin YK, Kweon DH, Kim KK (2008) The mechanism of temperature-induced bacterial HtrA activation. J Mol Biol 377:410–420

    Article  PubMed  CAS  Google Scholar 

  134. Kamath-Loeb AS, Gross CA (1991) Translational regulation of σ32 synthesis: requirement for an internal control element. J Bacteriol 173:3904–3906

    PubMed  CAS  Google Scholar 

  135. Nagai H, Yuzawa H, Yura T (1991) Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci USA 88:10515–10519

    Article  PubMed  CAS  Google Scholar 

  136. Yuzawa H, Nagai H, Mori H, Yura T (1993) Heat induction of σ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res 21:5449–5455

    Article  PubMed  CAS  Google Scholar 

  137. Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186:6824–6829

    Article  PubMed  CAS  Google Scholar 

  138. White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23°C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166

    Article  PubMed  CAS  Google Scholar 

  139. Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Bläsi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Narberhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkert, B., Narberhaus, F. Microbial thermosensors. Cell. Mol. Life Sci. 66, 2661–2676 (2009). https://doi.org/10.1007/s00018-009-0041-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0041-3

Keywords

Navigation