Skip to main content
Log in

Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Only recently, the fundamental role of regulatory RNAs in prokaryotes and eukaryotes has been appreciated. We developed a pipeline from bioinformatic prediction to experimental validation of new RNA thermometers. Known RNA thermometers are located in the 5′-untranslated region of certain heat shock or virulence genes and control translation by temperature-dependent base pairing of the ribosome binding site. We established the searchable database RNA-SURIBA (Structures of Untranslated Regions In BActeria). A structure-based search pattern reliably recognizes known RNA thermometers and predicts related structures upstream of annotated genes in complete genome sequences. The known ROSE1 (Repression Of heat Shock gene Expression) thermometer and several other functional ROSE-like elements were correctly predicted. For further investigation, we chose a new candidate upstream of the phage shock gene D (pspD) in the pspABCDE operon of E. coli. We established a new reporter gene system that measures translational control at heat shock temperatures and we demonstrated that the upstream region of pspD does not confer temperature control to the phage shock gene. However, translational efficiency was modulated by a point mutation stabilizing the predicted hairpin. Testing other candidates by this structure prediction and validation process will lead to new insights into the requirements for biologically active RNA thermometers. The database is available on http://www.ruhr-uni-bochum.de/mikrobiologie/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams H, Teertstra W, Demmers J, Boesten R, Tommassen J (2003) Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 185:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Altuvia S, Kornitzer D, Teff D, Oppenheim AB (1989) Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 210:265–280

    Article  PubMed  CAS  Google Scholar 

  • Barrick JE et al. (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci USA 101:6421–6426

    Article  PubMed  CAS  Google Scholar 

  • Brissette JL, Weiner L, Ripmaster TL, Model P (1991) Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 220:35–48

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Ragaz C, Kreuger E, Narberhaus F (2003) Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 278:47915–47921

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Maris C, Allain FH, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25:2487–2497

    Article  PubMed  CAS  Google Scholar 

  • Corbino KA et al (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6:R70

    Article  PubMed  Google Scholar 

  • Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57:621–628

    Article  PubMed  CAS  Google Scholar 

  • de Smit MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672

    Article  PubMed  Google Scholar 

  • de Smit MH, van Duin J (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244:144–150

    Article  PubMed  Google Scholar 

  • Eddy SR (2002) A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3:18

    Article  PubMed  Google Scholar 

  • Fogel GB et al. (2002) Discovery of RNA structural elements using evolutionary computation. Nucleic Acids Res 30:5310–5317

    Article  PubMed  CAS  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  • Hirata H, Negoro S, Okada H (1984) Molecular basis of isozyme formation of beta-galactosidases in Bacillus stearothermophilus: isolation of two beta-galactosidase genes, bgaA and bgaB. J Bacteriol 160:9–14

    PubMed  CAS  Google Scholar 

  • Imai Y, Matsushima Y, Sugimura T, Terada M (1991) A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 19:2785

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561

    Article  PubMed  Google Scholar 

  • Klein RJ, Eddy SR (2003) RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinform 4:44

    Article  Google Scholar 

  • Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York

    Google Scholar 

  • Model P, Jovanovic G, Dworkin J (1997) The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24:255–261

    Article  PubMed  CAS  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    PubMed  CAS  Google Scholar 

  • Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150

    Article  PubMed  CAS  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23:4383–4390

    PubMed  CAS  Google Scholar 

  • Narberhaus F, Käser R, Nocker A, Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30:3–16

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Article  PubMed  CAS  Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    Article  PubMed  CAS  Google Scholar 

  • Pridmore RD (1987) New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309–312

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959

    Article  PubMed  CAS  Google Scholar 

  • Sambrook JE, Fritsch F, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schyns G, Potot S, Geng Y, Barbosa TM, Henriques A, Perkins JB (2005) Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J Bacteriol 187:8127–8136

    Article  PubMed  CAS  Google Scholar 

  • Stoss O, Mogk A, Schumann W (1997) Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase. FEMS Microbiol Lett 150:49–54

    Article  PubMed  CAS  Google Scholar 

  • Straney R, Krah R, Menzel R (1994) Mutations in the -10 TATAAT sequence of the gyrA promoter affect both promoter strength and sensitivity to DNA supercoiling. J Bacteriol 176:5999–6006

    PubMed  CAS  Google Scholar 

  • Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F (2005) RNA thermometers are common in α- and γ-proteobacteria. Biol Chem 386:1279–1286

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (2007) FourU—a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424

    Article  PubMed  CAS  Google Scholar 

  • Weiner L, Brissette JL, Model P (1991) Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms. Genes Dev 5:1912–1923

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jan Tommassen (Utrecht) for antisera against Psp proteins and for plasmids pJP380 and pJF119HE, and Wolfgang Schumann (Bayreuth) for vector pGF-bgaB. We thank Michael Zuker (Rensselaer Polytechnic Institute, Troy, USA) for providing us with a licence of the mfold program and Juliane Alfsmann (Bochum) for construction of some bgaB fusions. This work was funded by German Research Foundation (DFG NA240/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Narberhaus.

Additional information

Communicated by M. Hecker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldminghaus, T., Gaubig, L.C. & Narberhaus, F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics 278, 555–564 (2007). https://doi.org/10.1007/s00438-007-0272-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0272-7

Keywords

Navigation