Skip to main content
Log in

Thermosensors in eubacteria: role and evolution

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Temperature is an important physical stress factor sensed by bacteria and used to regulate gene expression. Three different macromolecules have been identified being able to sense temperature: DNA, mRNA and proteins. Depending on the induction mechanism, two different pathways have to be distinguished, namely the heat shock response and the high temperature response. While the heat shock response is induced by temperature increments and is transient, the high temperature response needs a specific temperature to become induced and proceeds as long as cells are exposed to that temperature. The heat shock response is induced by denatured proteins and aimed to prevent formation of protein aggregates by refolding or degradation, and the high temperature response is mainly used by pathogenic bacteria to detect entry into a mammalian host followed by induction of their virulence genes. All known high temperature sensors are present in two alternative conformations depending on the temperature. Heat shock sensors are either molecular chaperones or proteases which keep either a positive transcriptional regulator inactive or a negative regulator active or do not attack the regulator, respectively, under physiological conditions. Denatured proteins either titrate the molecular chaperones or activate the protease. The evolution of the different temperature sensors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ades S E 2004 Control of the alternative sigma factor σE in Escherichia coli; Curr. Opin. Microbiol. 7 157–162

    Article  PubMed  CAS  Google Scholar 

  • Alba B M and Gross C A 2004 Regulation of the Escherichia coli σE-dependent envelope stress response; Mol. Microbiol. 52 613–619

    Article  PubMed  CAS  Google Scholar 

  • Alba B M, Leeds J A, Onufryk C, Lu C Z and Gross C A 2002 DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response; Genes Dev. 16 2156–2168

    Article  PubMed  CAS  Google Scholar 

  • Alba B M, Zhong H J, Pelayo J C, and Gross C A 2001 degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity; Mol. Microbiol. 40 1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Altuvia S, Kornitzer D, Teff D, and Oppenheim A B 1989 Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation; J. Mol. Biol. 210 265–280

    Article  PubMed  CAS  Google Scholar 

  • Atlung T and Ingmer H 1997 H-NS: a modulator of environmentally regulated gene expression; Mol. Microbiol. 24 7–17

    Article  PubMed  CAS  Google Scholar 

  • Bucca G, Brassington A M E, Schönfeld H-J and Smith C P 2000 The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor; Mol. Microbiol. 38 1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Bucca G, Hindle Z and Smith C P 1997 Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein; J. Bacteriol. 179 5999–6004

    PubMed  CAS  Google Scholar 

  • Clausen T, Southan C and Ehrmann M 2004 The HtrA family of proteases: implications for protein composition and cell fate; Mol. Cell 10 443–455

    Article  Google Scholar 

  • Colonna B, Casalino M, Fradiani P A, Zagaglia C, Naitza S, Leoni L, Prosseda G, Coppo A, Ghelardini P and Nicoletti M 1995 H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome; J. Bacteriol. 177 4703–4712

    PubMed  CAS  Google Scholar 

  • Cornelis G R and Wolf-Watz H 1997 The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells; Mol. Microbiol. 23 861–867

    Article  PubMed  CAS  Google Scholar 

  • Dame R T, Wyman C, Wurm R, Wagner R and Goosen N 2002 Structural basis for H-NS mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1; J. Biol. Chem. 277 2146–2150

    Article  PubMed  CAS  Google Scholar 

  • Grossman A D, Erickson J W and Gross C A 1984 The htpR gene product of E. coli is a sigma factor for heat-shock promoters; Cell 38 383–389

    Article  PubMed  CAS  Google Scholar 

  • Herman C, Thévenet D, D’Ari R and Bouloc P 1997 The HflB protease of Escherichia coli degrades its inhibitor lambda cIII; J. Bacteriol. 179 358–363

    PubMed  CAS  Google Scholar 

  • Herman C, Thévenet D, D’Ari R and Bouloc P 1995 Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB; Proc. Natl. Acad. Sci. USA 92 3516–3520

    Article  PubMed  CAS  Google Scholar 

  • Hurme R, Berndt K D, Namok E and Rhen M 1996 DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain; J. Biol. Chem. 271 12626–12631

    Article  PubMed  CAS  Google Scholar 

  • Hurme R, Berndt K D, Normark S J and Rhen M 1997 A proteinaceous gene regulatory thermometer in Salmonella; Cell 90 55–64

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M and Cossart P 2002 An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes; Cell 110 551–561

    Article  PubMed  Google Scholar 

  • Kaempfer R 2003 RNA sensors: novel regulators of gene expression; EMBO Rep. 4 1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Kanehara K, Ito K and Akiyama Y 2002 YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA; Genes Dev. 16 2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Krojer T, Garrido-Franco M, Huber R, Ehrmann M and Clausen T 2002 Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine; Nature (London) 416 455–459

    Article  CAS  Google Scholar 

  • Lambert de R C, Sluiters C, and Cornelis G R 1992 Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica; Mol. Microbiol. 6 395–409

    Article  Google Scholar 

  • Landick R, Vaughn V, Lau E T, VanBogelen R A, Erickson J W and Neidhardt F C 1984 Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product my be a transcription factor; Cell 38 175–182

    Article  PubMed  CAS  Google Scholar 

  • Lemaux P G, Herendeen S L, Bloch P and Neidhardt F C 1978 Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts; Cell 13 427–434

    Article  PubMed  CAS  Google Scholar 

  • Mandal M and Breaker R R 2004 Gene regulation by riboswitches; Nat. Rev. Mol. Cell Biol. 5 451–463

    Article  PubMed  CAS  Google Scholar 

  • Maurelli A T 1989 Temperature regulation of virulence genes in pathogenic bacteria: a general strategy for human pathogens?; Microb. Pathog. 7 1–10

    Article  PubMed  CAS  Google Scholar 

  • Michiels T, Vanooteghem J C, Lambert de R C, China B, Gustin A, Boudry P, and Cornelis G R 1991 Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica; J. Bacteriol. 173 4994–5009

    PubMed  CAS  Google Scholar 

  • Mizuno T 1987 Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures; Nucleic Acids Res. 15 6827–6841

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid F X, and Schumann W 1997 The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis; EMBO J. 16 4579–4590

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R I, Tissières A and Georgopoulos C 1990 Stress proteins in biology and medicine (New york; Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Morita M, Kanemori M, Yanagi H and Yura T 1999a Heat-induced synthesis of σ32 in Escherichia coli: Structural and functional dissection of rpoH mRNA secondary structure; J. Bacteriol. 181 401–410

    PubMed  CAS  Google Scholar 

  • Morita M T, Tanaka Y, Kodama T S, Kyogoku Y, Yanagi H and Yura T 1999b Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor; Genes Dev. 13 655–665

    PubMed  CAS  Google Scholar 

  • Narberhaus F, Käser R, Nocker A and Hennecke H 1998 A novel DNA element that controls bacterial heat shock gene expression; Mol. Microbiol. 28 315–323

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F, Waldminghaus T and Chowdhury S 2006 RNA thermometers; FEMS Microbiol. Rev. 30 3–16

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F, Weiglhofer W, Fischer H M and Hennecke H 1996 The Bradyrhizobium japonicum rpoH1 gene encoding a σ32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes; J. Bacteriol. 178 5337–5346

    PubMed  CAS  Google Scholar 

  • Nickerson C A and Achberger E C 1995 Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters; J. Bacteriol. 177 5756–5761

    PubMed  CAS  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic N P, Hennecke H and Narberhaus F 2001 A mRNA-based thermosensor controls expression of rhizobial heat shock genes; Nucleic Acids Res. 29 4800–4807

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T 2001 Intrinsic DNA bends: an organizer of local chromatin structure for transcription; BioEssays 23 708–715

    Article  PubMed  CAS  Google Scholar 

  • Prosseda G, Falconi M, Giangrossi M, Gualerzi C O, Micheli G and Colonna B 2004 The virF promoter in Shigella: more than just a curved DNA stretch; Mol. Microbiol. 51 523–537

    Article  PubMed  CAS  Google Scholar 

  • Prosseda G, Falconi M, Nicoletti M, Casalino M, Micheli G and Colonna B 2002 Histone-like proteins and the Shigella invasivity regulon; Res. Microbiol. 153 461–468

    Article  PubMed  CAS  Google Scholar 

  • Prosseda G, Fradiani PA, Di L M, Falconi M, Micheli G, Casalino M Nicoletti M, and Colonna B 1998 A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli; Res. Microbiol. 149 15–25

    Article  PubMed  CAS  Google Scholar 

  • Renzoni A, Klarsfeld A, Dramsi S and Cossart P 1997 Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive; Infect. Immun. 65 1515–1518

    PubMed  CAS  Google Scholar 

  • Ritossa F 1962 A new puffing pattern induced by temperature shock and DNP in Drosophila; Experientia 18 571–573

    Article  CAS  Google Scholar 

  • Rohde J R, Luan X S, Rohde H, Fox J M and Minnich S A 1999 The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C; J. Bacteriol. 181 4198–4204

    PubMed  CAS  Google Scholar 

  • Saras J and Heldin C H 1996 PDZ domains bind carboxy-terminal sequences of target proteins; Trends Biochem. Sci. 21 455–458

    Article  PubMed  CAS  Google Scholar 

  • Schröder O and Wagner R 2002 The bacterial regulatory protein H-NS—a versatile modulator of nucleic acid structures; Biol. Chem. 383 945–960

    Article  PubMed  Google Scholar 

  • Schumann W 2003 The Bacillus subtilis heat shock stimulon; Cell Stress Chaperones 8 207–217

    Article  PubMed  CAS  Google Scholar 

  • Servant P, Grandvalet C and Mazodier P 2000 The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus; Proc. Natl. Acad. Sci. USA 97 3538–3543

    Article  PubMed  CAS  Google Scholar 

  • Servant P and Mazodier P 1995 Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein; J. Bacteriol. 177 2998–3003

    PubMed  CAS  Google Scholar 

  • Shotland Y, Koby S, Teff D, Mansur N, Oren D A, Tatematsu K, Tomoyasu T, Kessel M, Bukau B, Ogura T and Oppenheim A B 1997 Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli; Mol. Microbiol. 24 1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Spiess C, Beil A and Ehrmann M 1999 A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein; Cell 97 339–347

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Opdyke J A and Zhang A 2004 Controlling mRNA stability and translation with small, noncoding RNAs; Curr. Opin. Microbiol. 7 140–144

    Article  PubMed  CAS  Google Scholar 

  • Strauch, K. L. and Beckwith J 1988 An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins; Proc. Natl. Acad. Sci. USA 85 1576–1580

    Article  PubMed  CAS  Google Scholar 

  • Sussman, R and Jacob F 1962 Sur un système de répression thermosensible chez le bactériophage d’Escherichia coli; C. R. Hebd. Seances Acad. Sci. 254 1517–1519

    PubMed  CAS  Google Scholar 

  • Tanaka K, Muramatsu S, Yamada H and Mizuno T 1991 Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance; Mol. Gen. Genet. 226 367–376

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, Spence J, and Georgopoulos C 1989 Modulation of stability of the Escherichia coli heat shock regulatory factor σ32; J. Bacteriol. 171 1585–1589

    PubMed  CAS  Google Scholar 

  • Tissières A, Mitchell H K, and Tracy V M 1974 Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs; J. Mol. Biol. 84 389–398

    Article  PubMed  Google Scholar 

  • Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman A J, Oppenheim A B, Yura T, Yamanaka K, Niki H, Hiraga S and Ogura T 1995 Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32; EMBO J. 14 2551–2560

    PubMed  CAS  Google Scholar 

  • Walsh N P, Alba B M, Bose B, Gross C A, and Sauer R T 2003 OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain; Cell 113 61–71

    Article  PubMed  CAS  Google Scholar 

  • Winkler W C and Breaker R R 2005 Regulation of bacterial gene expression by riboswitches; Annu. Rev. Microbiol. 59 487–517

    Article  PubMed  CAS  Google Scholar 

  • Yamamori T and Yura T 1982 Genetic control of heat-shock protein synthesis and its bearing on growth and thermal regulation in Escherichia coli K12; Proc. Natl. Acad. Sci. USA 79 860–864

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K 1999 Cold shock response in Escherichia coli; J. Mol. Microbiol. Biotechnol. 1 193–202

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, W. Thermosensors in eubacteria: role and evolution. J Biosci 32, 549–557 (2007). https://doi.org/10.1007/s12038-007-0054-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0054-8

Keywords

Navigation