Skip to main content

Advertisement

Log in

The role of nitric oxide during healing of trauma to the skeletal muscle

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

The role of NO in muscle injury is not clear.

Methods

We examined the involvement of the NO system in the development of muscle damage in an experimental model of crush injury. The animals were divided into four groups: (1) control (CO), (2) sham trauma, (3) trauma, (4) trauma + l-NAME, in two experimental phases, 24 h and 7 days after injury.

Results

Twenty-four hours post-trauma, the crushed muscle was characterized by an intense inflammatory reaction. These changes were accompanied by increased oxidative damage, increased cytokine mRNA transcription, NF-κB binding ability and TGF-β growth factor expression in the gastrocnemius muscle. Treatment with l-NAME markedly decreased these histological and molecular abnormalities at 24 h. However, at 7 days post-trauma, increased collagen formation was observed in the l-NAME group.

Discussion

These findings indicate that NO is involved in the balance between fibrosis and healing with regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kirkendall DT, Garrett WE Jr. Clinical perspectives regarding eccentric muscle injury. Clin Orthop Relat Res. 2002;S81–9.

  2. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Jt Surg Am. 2002;84-A:822–32.

    Google Scholar 

  3. Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33:745–64.

    Article  PubMed  Google Scholar 

  4. Toumi H, F’Guyer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat. 2006;208:459–70.

    Article  PubMed  CAS  Google Scholar 

  5. Pierce AP, de Waal E, McManus LM, Shireman PK, Chaudhuri AR. Oxidation and structural perturbation of redox-sensitive enzymes in injured skeletal muscle. Free Radic Biol Med. 2007;43:1584–93.

    Article  PubMed  CAS  Google Scholar 

  6. Butterfield TA, Best TM, Merrick MA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train. 2006;41:457–65.

    PubMed  Google Scholar 

  7. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  CAS  Google Scholar 

  8. Seeland U, Haeuseler C, Hinrichs R, Rosenkranz S, Pfitzner T, Scharffetter-Kochanek K, et al. Myocardial fibrosis in transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest. 2002;32:295–303.

    Article  PubMed  CAS  Google Scholar 

  9. Quintero AJ, Wright VJ, Fu FH, Huard J. Stem cells for the treatment of skeletal muscle injury. Clin Sports Med. 2009;28:1–11.

    Article  PubMed  Google Scholar 

  10. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, et al. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004;164:1007–19.

    Article  PubMed  CAS  Google Scholar 

  11. Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6:265–78.

    Article  PubMed  Google Scholar 

  12. Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol. 2004;287:C246–56.

    Article  PubMed  CAS  Google Scholar 

  13. Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact. 2006;163:38–53.

    Article  PubMed  CAS  Google Scholar 

  14. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature. 1994;372:546–8.

    Article  PubMed  CAS  Google Scholar 

  15. Clancy RM, Leszczynska-Piziak J, Abramson SB. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest. 1992;90:1116–21.

    Article  PubMed  CAS  Google Scholar 

  16. Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol. 2001;166:3873–81.

    PubMed  CAS  Google Scholar 

  17. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3:65–70.

    Article  PubMed  CAS  Google Scholar 

  18. LECH OLC. Efeito do uso de corticóide em tendões previamente traumatizados: estudo experimental. Revista Brasileira de Ortopedia. 1996;31:187–91.

    Google Scholar 

  19. Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38:704–13.

    Article  PubMed  Google Scholar 

  20. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10.

    Article  PubMed  CAS  Google Scholar 

  21. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.

    PubMed  CAS  Google Scholar 

  22. Misra HP, Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem. 1972;247:188–92.

    PubMed  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  24. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–89.

    Article  PubMed  CAS  Google Scholar 

  25. Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 1996;268:142–51.

    Article  PubMed  CAS  Google Scholar 

  26. Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006;20:1692–708.

    Article  PubMed  CAS  Google Scholar 

  27. Pizza FX, Hernandez IJ, Tidball JG. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use. J Leukoc Biol. 1998;64:427–33.

    PubMed  CAS  Google Scholar 

  28. Shukla A, Rasik AM, Shankar R. Nitric oxide inhibits wounds collagen synthesis. Mol Cell Biochem. 1999;200:27–33.

    Article  PubMed  CAS  Google Scholar 

  29. Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, et al. Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med. 2005;37:293–300.

    Article  PubMed  Google Scholar 

  30. Rubinstein I, Abassi Z, Coleman R, Milman F, Winaver J, Better OS. Involvement of nitric oxide system in experimental muscle crush injury. J Clin Invest. 1998;101:1325–33.

    Article  PubMed  CAS  Google Scholar 

  31. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288:R345–53.

    Article  PubMed  CAS  Google Scholar 

  32. Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life. 2001;52:159–64.

    Article  PubMed  CAS  Google Scholar 

  33. Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A. Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int. 2008;28:245–51.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson MJ. Redox regulation of skeletal muscle. IUBMB Life. 2008;60:497–501.

    Article  PubMed  CAS  Google Scholar 

  35. Salvemini D, Doyle TM, Cuzzocrea S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans. 2006;34:965–70.

    Article  PubMed  CAS  Google Scholar 

  36. Lancaster JR Jr. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol. 2006;19:1160–74.

    Article  PubMed  CAS  Google Scholar 

  37. Kerkweg U, Schmitz D, de Groot H. Screening for the formation of reactive oxygen species and of NO in muscle tissue and remote organs upon mechanical trauma to the mouse hind limb. Eur Surg Res. 2006;38:83–9.

    Article  PubMed  CAS  Google Scholar 

  38. Halliwell B. The chemistry of free radicals and related ‘reactive species’ Antioxidant defenses endogenous and diet derived. In: Press U, editor. Free radicals in biology and medicine, vol. 4. New York; 2007;30–185.

  39. Kocaturk PA, Kavas GO. Effect of an inhibitor of nitric oxide production on Cu–Zn/SOD and its cofactors in diabetic rats. Biol Trace Elem Res. 2007;115:59–65.

    Article  PubMed  CAS  Google Scholar 

  40. Filippin LI, Moreira AJ, Marroni NP, Xavier RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide: Biology and Chemistry. 2009;21:157–63.

    Article  CAS  Google Scholar 

  41. Yamasaki K, Edington HD, McClosky C, Tzeng E, Lizonova A, Kovesdi I, et al. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest. 1998;101:967–71.

    Article  PubMed  CAS  Google Scholar 

  42. Schaffer MR, Tantry U, van Wesep RA, Barbul A. Nitric oxide metabolism in wounds. J Surg Res. 1997;71:25–31.

    Article  PubMed  CAS  Google Scholar 

  43. Tews DS, Goebel HH. Cell death and oxidative damage in inflammatory myopathies. Clin Immunol Immunopathol. 1998;87:240–7.

    Article  PubMed  CAS  Google Scholar 

  44. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  PubMed  CAS  Google Scholar 

  45. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.

    Article  PubMed  CAS  Google Scholar 

  46. Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, et al. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res. 2002;54:95–104.

    Article  PubMed  CAS  Google Scholar 

  47. Adams V, Spate U, Krankel N, Schulze PC, Linke A, Schuler G, et al. Nuclear factor-kappa B activation in skeletal muscle of patients with chronic heart failure: correlation with the expression of inducible nitric oxide synthase. Eur J Cardiovasc Prev Rehabil. 2003;10:273–7.

    Article  PubMed  Google Scholar 

  48. Tang JB, Xu Y, Ding F, Wang XT. Expression of genes for collagen production and NF-kappaB gene activation of in vivo healing flexor tendons. J Hand Surg Am. 2004;29:564–70.

    Article  PubMed  Google Scholar 

  49. Lille ST, Lefler SR, Mowlavi A, Suchy H, Boyle EM Jr, Farr AL, et al. Inhibition of the initial wave of NF-kappaB activity in rat muscle reduces ischemia/reperfusion injury. Muscle Nerve. 2001;24:534–41.

    Article  PubMed  CAS  Google Scholar 

  50. Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A, Rajfer J, et al. Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide. 2002;6:283–94.

    Article  PubMed  CAS  Google Scholar 

  51. Amadeu TP, Seabra AB, de Oliveira MG, Costa AM. S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol. 2007;21:629–37.

    PubMed  CAS  Google Scholar 

  52. Angeli P, Prado CM, Xisto DG, Silva PL, Passaro CP, Nakazato HD, et al. Effects of chronic l-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1197–205.

    Article  PubMed  CAS  Google Scholar 

  53. Lukivskaya O, Patsenker E, Lis R, Buko VU. Inhibition of inducible nitric oxide synthase activity prevents liver recovery in rat thioacetamide-induced fibrosis reversal. Eur J Clin Invest. 2008;38:317–25.

    Article  PubMed  CAS  Google Scholar 

  54. Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res. 2007;149(1):84–93.

    Google Scholar 

  55. Angeli P, Prado CM, Xisto DG, Silva PL, Passaro CP, Nakazato HD, et al. Effects of chronic l-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1197–205.

    Article  PubMed  CAS  Google Scholar 

  56. Smith CA, Stauber F, Waters C, Alway SE, Stauber WT. Transforming growth factor-beta following skeletal muscle strain injury in rats. J Appl Physiol. 2007;102:755–61.

    Article  PubMed  CAS  Google Scholar 

  57. Warren G, O’Farrell L, Summan M, Hulderman T, Mishra D, Luster M, et al. Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol. 2004;286:C1031–6.

    Article  PubMed  CAS  Google Scholar 

  58. Yahiaoui L, Gvozdic D, Danialou G, Mack M, Petrof B. CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol. 2008;586:3991–4004.

    Article  PubMed  CAS  Google Scholar 

  59. Metsios G, Stavropoulos-Kalinoglou A, Douglas K, Koutedakis Y, Nevill A, Panoulas V, et al. Blockade of tumour necrosis factor-alpha in rheumatoid arthritis: effects on components of rheumatoid cachexia. Rheumatology (Oxford). 2007;46:1824–7.

    Article  CAS  Google Scholar 

  60. Hodgetts S, Radley H, Davies M, Grounds M. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord. 2006;16:591–602.

    Article  PubMed  Google Scholar 

  61. Wang W, Pan H, Murray K, Jefferson B, Li Y. Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol. 2009;174:541–9.

    Article  PubMed  CAS  Google Scholar 

  62. Rantanen J, Thorsson O, Wollmer P, Hurme T, Kalimo H. Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am J Sports Med. 1999;27:54–9.

    PubMed  CAS  Google Scholar 

  63. Liu D, Black B, Derynck R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev. 2001;15:2950–66.

    Article  PubMed  CAS  Google Scholar 

  64. Cannon J, St Pierre B. Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem. 1998;179:159–67.

    Article  PubMed  CAS  Google Scholar 

  65. Darmani H, Crossan J, McLellan SD, Meek D, Adam C. Expression of nitric oxide synthase and transforming growth factor-beta in crush-injured tendon and synovium. Mediators Inflamm. 2004;13:299–305.

    Article  PubMed  CAS  Google Scholar 

  66. Qi S, den Hartog GJ, Bast A. Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol. 2009;237:111–8.

    Article  PubMed  CAS  Google Scholar 

  67. Treiber N, Peters T, Sindrilaru A, Huber R, Kohn M, Menke A, et al. Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation. Arch Dermatol Res. 2009;301:273–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundo de Incentivo a Pesquisa e Eventos (FIPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Machado Xavier.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippin, L.I., Cuevas, M.J., Lima, E. et al. The role of nitric oxide during healing of trauma to the skeletal muscle. Inflamm. Res. 60, 347–356 (2011). https://doi.org/10.1007/s00011-010-0277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0277-2

Keywords

Navigation