Skip to main content

Advertisement

Log in

Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Cell–matrix interactions are of significant importance for tissue homeostasis of the skin and, if disturbed, may lead to ageing and hyperplastic scar formation. We have studied fibroblasts stably overexpressing manganese superoxide dismutase (MnSOD) with a defined capacity for the removal of superoxide anions and concomitant accumulation of hydrogen peroxide to evaluate the role of enhanced MnSOD activity on the dynamics of cell–matrix interactions in the three-dimensional collagen lattice contraction assay. MnSOD overexpressing fibroblast populated collagen lattices revealed a significantly enhanced contraction compared to collagen lattices populated with vector control cells. The enhanced collagen lattice contraction was in part due to an increase in active TGF-β1 and the accumulation of H2O2 in MnSOD overexpressing fibroblasts populated collagen lattices. Inhibition of TGF-β1 signalling by the ALK4,5,7 kinases’ inhibitor SB431542 at least partly inhibited the enhanced collagen lattice contraction of MnSOD overexpressing fibroblasts populated lattices. In addition, supplementation of vector control fibroblast populated collagen lattices with recombinant TGF-β1 concentration dependently enhanced the collagen lattice contraction. In the presence of the antioxidant Ebselen, a mimic of H2O2 and other hydroperoxides/peroxynitrite-detoxifying glutathione peroxidase, collagen lattice contraction and the activation of TGF-β1 were significantly reduced in collagen lattices populated with MnSOD overexpressing fibroblasts. Collectively, these data suggest that H2O2 or other hydroperoxides or peroxynitrite or a combination thereof may function as important second messengers in collagen lattice contraction and act at least in part via TGF-β1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akashi M, Hachiya M, Paquette RL, Osawa Y, Shimizu S, Suzuki G (1995) Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J Biol Chem 270:15864–15869. doi:10.1074/jbc.270.26.15864

    Article  PubMed  CAS  Google Scholar 

  2. Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10:1077–1083. doi:10.1210/me.10.9.1077

    Article  PubMed  CAS  Google Scholar 

  3. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286. doi:10.1038/nmeth866

    Article  PubMed  CAS  Google Scholar 

  4. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358. doi:10.1056/NEJM200005043421807

    Article  PubMed  CAS  Google Scholar 

  5. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292. doi:10.1056/NEJM199411103311907

    Article  PubMed  CAS  Google Scholar 

  6. Breathnach AS (1978) Development and differentiation of dermal cells in man. J Invest Dermatol 71:2–8. doi:10.1111/1523-1747.ep12543601

    Article  PubMed  CAS  Google Scholar 

  7. Brenneisen P, Sies H, Scharffetter-Kochanek K (2002) Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann NY Acad Sci 973:31–43

    Article  PubMed  CAS  Google Scholar 

  8. Brissett AE, Sherris DA (2001) Scar contractures, hypertrophic scars, and keloids. Facial Plast Surg 17:263–272. doi:10.1055/s-2001-18827

    Article  PubMed  CAS  Google Scholar 

  9. Brunner G, Blakytny R (2004) Extracellular regulation of TGF-beta activity in wound repair: growth factor latency as a sensor mechanism for injury. Thromb Haemost 92:253–261

    PubMed  CAS  Google Scholar 

  10. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309:886–887. doi:10.1126/science.1116801

    Article  PubMed  CAS  Google Scholar 

  11. Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 92:6264–6268. doi:10.1073/pnas.92.14.6264

    Article  PubMed  CAS  Google Scholar 

  12. de Haan JB, Bladier C, Griffiths P et al (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536. doi:10.1074/jbc.273.35.22528

    Article  PubMed  Google Scholar 

  13. de Haan JB, Cristiano F, Iannello R, Bladier C, Kelner MJ, Kola I (1996) Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 5:283–292. doi:10.1093/hmg/5.2.283

    Article  PubMed  Google Scholar 

  14. Frippiat C, Dewelle J, Remacle J, Toussaint O (2002) Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med 33:1334–1346. doi:10.1016/S0891-5849(02)01044-4

    Article  PubMed  CAS  Google Scholar 

  15. Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV (2008) Oxidative stress and the pathogenesis of scleroderma: the Murrell’s hypothesis revisited. Semin Immunopathol 30:329–337. doi:10.1007/s00281-008-0125-4

    Article  PubMed  CAS  Google Scholar 

  16. Harris CA, Derbin KS, Hunte-McDonough B et al (1991) Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types. Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1. J Immunol 147:149–154

    PubMed  CAS  Google Scholar 

  17. Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ (1998) Reduced fertility in female mice lacking copper–zinc superoxide dismutase. J Biol Chem 273:7765–7769. doi:10.1074/jbc.273.13.7765

    Article  PubMed  CAS  Google Scholar 

  18. Ho YS, Magnenat JL, Bronson RT et al (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651. doi:10.1074/jbc.272.26.16644

    Article  PubMed  CAS  Google Scholar 

  19. Hu D, Cao P, Thiels E et al (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384. doi:10.1016/j.nlm.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  20. Imamichi Y, Waidmann O, Hein R, Eleftheriou P, Giehl K, Menke A (2005) TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol Chem 386:225–236. doi:10.1515/BC.2005.028

    Article  PubMed  CAS  Google Scholar 

  21. Inman GJ, Nicolas FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74. doi:10.1124/mol.62.1.65

    Article  PubMed  CAS  Google Scholar 

  22. Kessler D, Dethlefsen S, Haase I et al (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276:36575–36585. doi:10.1074/jbc.M101602200

    Article  PubMed  CAS  Google Scholar 

  23. Klein CE, Dressel D, Steinmayer T et al (1991) Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J Cell Biol 115:1427–1436. doi:10.1083/jcb.115.5.1427

    Article  PubMed  CAS  Google Scholar 

  24. Kops GJ, Dansen TB, Polderman PE et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321. doi:10.1038/nature01036

    Article  PubMed  CAS  Google Scholar 

  25. Kreppel F, Biermann V, Kochanek S, Schiedner G (2002) A DNA-based method to assay total and infectious particle contents and helper virus contamination in high-capacity adenoviral vector preparations. Hum Gene Ther 13:1151–1156. doi:10.1089/104303402320138934

    Article  PubMed  CAS  Google Scholar 

  26. Krtolica A, Campisi J (2002) Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34:1401–1414. doi:10.1016/S1357-2725(02)00053-5

    Article  PubMed  CAS  Google Scholar 

  27. Labat-Robert J, Robert L (2007) The effect of cell–matrix interactions and aging on the malignant process. Adv Cancer Res 98:221–259. doi:10.1016/S0065-230X(06)98007-5

    Article  PubMed  CAS  Google Scholar 

  28. Lebovitz RM, Zhang H, Vogel H et al (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787. doi:10.1073/pnas.93.18.9782

    Article  PubMed  CAS  Google Scholar 

  29. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647. doi:10.1126/science.1083614

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381. doi:10.1038/ng1295-376

    Article  PubMed  CAS  Google Scholar 

  31. Meewes C, Brenneisen P, Wenk J et al (2001) Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Free Radic Biol Med 30:238–247. doi:10.1016/S0891-5849(00)00463-9

    Article  PubMed  CAS  Google Scholar 

  32. Montesano R, Orci L (1988) Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci USA 85:4894–4897. doi:10.1073/pnas.85.13.4894

    Article  PubMed  CAS  Google Scholar 

  33. Oberley TD, Oberley LW (1993) Oxygen radical and cancer. In: Yu BP (ed) Free radicals in aging. CRC, Boca Raton, pp 247–268

    Google Scholar 

  34. Peters T, Sindrilaru A, Hinz B et al (2005) Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410. doi:10.1038/sj.emboj.7600809

    Article  PubMed  CAS  Google Scholar 

  35. Poswig A, Wenk J, Brenneisen P et al (1999) Adaptive antioxidant response of manganese-superoxide dismutase following repetitive UVA irradiation. J Invest Dermatol 112:13–18. doi:10.1046/j.1523-1747.1999.00465.x

    Article  PubMed  CAS  Google Scholar 

  36. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883. doi:10.1126/science.1130481

    Article  PubMed  Google Scholar 

  37. Salomon D, Saurat JH, Meda P (1988) Cell-to-cell communication within intact human skin. J Clin Invest 82:248–254. doi:10.1172/JCI113578

    Article  PubMed  CAS  Google Scholar 

  38. Sato M, Sasaki M, Hojo H (1995) Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-alpha and interleukin-6. Arch Biochem Biophys 316:738–744. doi:10.1006/abbi.1995.1098

    Article  PubMed  CAS  Google Scholar 

  39. Scharffetter-Kochanek K, Lu H, Norman K et al (1998) Spontaneous skin ulceration and defective T cell function in CD18 null mice. J Exp Med 188:119–131. doi:10.1084/jem.188.1.119

    Article  PubMed  CAS  Google Scholar 

  40. Schiedner G, Hertel S, Kochanek S (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11:2105–2116. doi:10.1089/104303400750001417

    Article  PubMed  CAS  Google Scholar 

  41. Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339:213–214. doi:10.1016/0140-6736(92)90009-R

    Article  PubMed  CAS  Google Scholar 

  42. Sheng H, Brady TC, Pearlstein RD, Crapo JD, Warner DS (1999) Extracellular superoxide dismutase deficiency worsens outcome from focal cerebral ischemia in the mouse. Neurosci Lett 267:13–16. doi:10.1016/S0304-3940(99)00316-X

    Article  PubMed  CAS  Google Scholar 

  43. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25:1058–1071. doi:10.1002/anie.198610581

    Article  Google Scholar 

  44. Sies H (1991) Oxidative stress: oxidants and antioxidants. Academic Press, New York

    Google Scholar 

  45. Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812–27817. doi:10.1074/jbc.272.44.27812

    Article  PubMed  CAS  Google Scholar 

  46. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746. doi:10.1056/NEJM199909023411006

    Article  PubMed  CAS  Google Scholar 

  47. St Clair DK, Oberley TD, Muse KE, St Clair WH (1994) Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med 16:275–282. doi:10.1016/0891-5849(94)90153-8

    Article  PubMed  CAS  Google Scholar 

  48. Steiling H, Munz B, Werner S, Brauchle M (1999) Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp Cell Res 247:484–494. doi:10.1006/excr.1998.4366

    Article  PubMed  CAS  Google Scholar 

  49. Stessman J, Maaravi Y, Hammerman-Rozenberg R et al (2005) Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. Mech Ageing Dev 126:333–339. doi:10.1016/j.mad.2004.08.025

    Article  PubMed  CAS  Google Scholar 

  50. Strassburger M, Bloch W, Sulyok S et al (2005) Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic Biol Med 38:1458–1470. doi:10.1016/j.freeradbiomed.2005.02.009

    Article  PubMed  CAS  Google Scholar 

  51. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  52. Tse R, Howard J, Wu Y, Gan BS (2004) Enhanced Dupuytren’s disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-beta2. BMC Musculoskelet Disord 5:41. doi:10.1186/1471-2474-5-41

    Article  PubMed  CAS  Google Scholar 

  53. Van Exan RJ, Hardy MH (1984) The differentiation of the dermis in the laboratory mouse. Am J Anat 169:149–164. doi:10.1002/aja.1001690204

    Article  PubMed  Google Scholar 

  54. Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 257:180–189. doi:10.1006/excr.2000.4869

    Article  PubMed  CAS  Google Scholar 

  55. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14. doi:10.1016/j.molcel.2007.03.016

    Article  PubMed  CAS  Google Scholar 

  56. Wendel A, Fausel M, Safayhi H, Tiegs G, Otter R (1984) A novel biologically active seleno-organic compound. II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol 33:3241–3245. doi:10.1016/0006-2952(84)90084-4

    Article  PubMed  CAS  Google Scholar 

  57. Wenk J, Brenneisen P, Wlaschek M et al (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem 274:25869–25876. doi:10.1074/jbc.274.36.25869

    Article  PubMed  CAS  Google Scholar 

  58. Wenk J, Schuller J, Hinrichs C et al (2004) Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release. J Biol Chem 279:45634–45642. doi:10.1074/jbc.M408893200

    Article  PubMed  CAS  Google Scholar 

  59. Werner E, Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158:357–368. doi:10.1083/jcb.200111028

    Article  PubMed  CAS  Google Scholar 

  60. Wilgus TA, Bergdall VK, Dipietro LA, Oberyszyn TM (2005) Hydrogen peroxide disrupts scarless fetal wound repair. Wound Repair Regen 13:513–519. doi:10.1111/j.1067-1927.2005.00072.x

    Article  PubMed  Google Scholar 

  61. Wispe JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA (1989) Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta 994:30–36

    PubMed  CAS  Google Scholar 

  62. Yang CF, Shen HM, Ong CN (1999) Protective effect of Ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem Pharmacol 57:273–279. doi:10.1016/S0006-2952(98)00299-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the German Research Foundation (DFG) to financially support the Clinical Research Group KFO 142 “Molecular and Cellular Ageing—From Mechanisms to Clinical Perspectives”, with a project assigned to K-SK. We thank the European Union to support us in the Proteomage and Cascade Programme. We are indebted to Mrs. Hannelore Cox for professional editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Scharffetter-Kochanek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treiber, N., Peters, T., Sindrilaru, A. et al. Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation. Arch Dermatol Res 301, 273–287 (2009). https://doi.org/10.1007/s00403-009-0935-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0935-9

Keywords

Navigation