Skip to main content
Log in

3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

In the last few years, 3D printing has emerged as a promising alternative for the fabrication of microfluidic devices, overcoming some of the limitations associated with conventional soft-lithography. Stereolithography (SLA), extrusion-based technology, and inkjet 3D printing are three of the widely used 3D printing technologies owing to their accessibility and affordability. Microfluidic devices can be 3D printed by employing a manufacturing approach from four fundamental manufacturing approaches classified as (1) direct printing approach, (2) mold-based approach, (3) modular approach, and (4) hybrid approach. To evaluate the feasibility of 3D printing technologies for fabricating microfluidic devices, a review focused on 3D printing fundamental manufacturing approaches has been presented. Using a broad spectrum of additive manufacturing materials, 3D printed microfluidic devices have been implemented in various fields, including biological, chemical, and material synthesis. However, some crucial challenges are associated with the same, including low resolution, low optical transparency, cytotoxicity, high surface roughness, autofluorescence, non-compatibility with conventional sterilization methods, and low gas permeability. The recent research progress in materials related to additive manufacturing has aided in overcoming some of these challenges. Lastly, we outline possible implications of 3D printed microfluidics on the various fields of healthcare such as in vitro disease modeling and organ modeling, novel drug development, personalized treatment for cancer, and cancer drug screening by discussing the current state and future outlook of 3D printed ‘organs-on-chips,’ and 3D printed ‘tumor-on-chips.’ We conclude the review by highlighting future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2018 American Chemical Society. A scale bar has been added based on channel size reported. Panel (b) is reproduced from Ref. [47] with permission from The Royal Society of Chemistry. A scale bar has been added based on overall dimensions reported. Panels (c) and (d) are reprinted from [48], with the permission of AIP Publishing. A scale bar has been added in (c) and (d) based on channel size reported. Panels (e) and (f) are reprinted with permission from [50]. Copyright 2018 American Chemical Society. A scale bar has been added in (f) based on overall dimensions reported

Fig. 5
Fig. 6
Fig. 7

Copyright 2019, with permission from Elsevier

Fig. 8

reproduced from Ref. [68] with permission from The Royal Society of Chemistry. Panel (b) is reproduced from [70] with permission of John Wiley and Sons. Panel (c) is reproduced from Ref. [71] with permission from The Royal Society of Chemistry

Fig. 9

reproduced from Ref. [75] with permission from The Royal Society of Chemistry. Panel (c) is reproduced from [77] with permission of John Wiley and Sons. A scale bar has been added based on channel size reported. Panel (d) is reproduced from Ref. [78] with permission from The Royal Society of Chemistry

Fig. 10
Fig. 11

Copyright 2018, with permission from Elsevier. A scale bar has been added in (a) and (b) based on overall dimensions and feature size reported

Fig. 12

Copyright 2012 American Chemical Society. Panel (c) is reproduced from Ref. [171] with permission from The Royal Society of Chemistry. Panel (e) is reproduced from [178] with permission of John Wiley and Sons

Fig. 13

reproduced from Ref. [117] with permission from The Royal Society of Chemistry

Similar content being viewed by others

References

  1. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions: sixth international bio-fluid mechanics symposium and workshop March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38:1164–1177. https://doi.org/10.1007/s10439-010-9899-3

    Article  Google Scholar 

  2. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S (2011) Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem 83:8454–8459. https://doi.org/10.1021/ac202170e

    Article  Google Scholar 

  3. Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE (2018) Microfluidic organ-on-a-chip models of human intestine. CMGH 5:659–668. https://doi.org/10.1016/j.jcmgh.2017.12.010

    Article  Google Scholar 

  4. Huh D (2015) A human breathing lung-on-a-chip. In: Annals of the American Thoracic Society. American Thoracic Society, pp S42–S44

  5. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164. https://doi.org/10.1039/c2lc40089h

    Article  Google Scholar 

  6. Zhu J (2020) Application of organ-on-chip in drug discovery. J Biosci Med 08:119–134. https://doi.org/10.4236/jbm.2020.83011

    Article  Google Scholar 

  7. Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, Cronce M, Huffstater T, Jeanty SSF, Ingram M, Chalkiadaki A, Benson Chou D, Marquez S, Delahanty A, Jalili-Firoozinezhad S, Milton Y, Sontheimer-Phelps A, Swenor B, Levy O, Parker KK, Przekwas A, Ingber DE (2020) Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng 4:421–436. https://doi.org/10.1038/s41551-019-0498-9

    Article  Google Scholar 

  8. Lin H, Lozito TP, Alexander PG, Gottardi R, Tuan RS (2014) Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1Β. Mol Pharm 11:2203–2212. https://doi.org/10.1021/mp500136b

    Article  Google Scholar 

  9. Tsai HF, Trubelja A, Shen AQ, Bao G (2017) Tumour-on-a-chip: Microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14:20170137. https://doi.org/10.1098/rsif.2017.0137

    Article  Google Scholar 

  10. Ma Y-HV, Middleton K, You L, Sun Y (2018) A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst Nanoeng 4:1–13. https://doi.org/10.1038/micronano.2017.104

    Article  Google Scholar 

  11. Dhiman N, Kingshott P, Sumer H, Sharma CS, Rath SN (2019) On-chip anticancer drug screening—recent progress in microfluidic platforms to address challenges in chemotherapy. Biosens Bioelectron 137:236–254. https://doi.org/10.1016/j.bios.2019.02.070

    Article  Google Scholar 

  12. Dhiman N, Shagaghi N, Bhave M, Sumer H, Kingshott P, Rath SN (2020) Selective cytotoxicity of a novel Trp-rich peptide against lung tumor spheroids encapsulated inside a 3D microfluidic device. Adv Biosyst 4:1900285. https://doi.org/10.1002/adbi.201900285

    Article  Google Scholar 

  13. Sankar S, Kakunuri MD, EswaramoorthySharmaRath SCSSN (2018) Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: biomimicking bone. J Tissue Eng Regen Med 12:2073–2084. https://doi.org/10.1002/term.2640

    Article  Google Scholar 

  14. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502. https://doi.org/10.1038/nprot.2009.234

    Article  Google Scholar 

  15. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7:1247–1259. https://doi.org/10.1038/nprot.2012.051

    Article  Google Scholar 

  16. Sankar S, Sharma CS, Rath SN (2019) Enhanced osteodifferentiation of MSC spheroids on patterned electrospun fiber mats—an advanced 3D double strategy for bone tissue regeneration. Mater Sci Eng C 94:703–712. https://doi.org/10.1016/j.msec.2018.10.025

    Article  Google Scholar 

  17. Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–1742. https://doi.org/10.1039/c6lc00163g

    Article  Google Scholar 

  18. Ho CMB, Ng SH, Li KHH, Yoon YJ (2015) 3D printed microfluidics for biological applications. Lab Chip 15:3627–3637. https://doi.org/10.1039/c5lc00685f

    Article  Google Scholar 

  19. Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H (2015) Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid Nanofluid 19:9–18. https://doi.org/10.1007/s10404-014-1542-4

    Article  Google Scholar 

  20. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16:1993–2013. https://doi.org/10.1039/c6lc00284f

    Article  Google Scholar 

  21. Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20:1–18. https://doi.org/10.1007/s10404-016-1715-4

    Article  Google Scholar 

  22. Naderi A, Bhattacharjee N, Folch A (2019) Digital manufacturing for microfluidics. Annu Rev Biomed Eng 21:325–364. https://doi.org/10.1146/annurev-bioeng-092618-020341

    Article  Google Scholar 

  23. Weisgrab G, Ovsianikov A, Costa PF (2019) Functional 3D printing for microfluidic chips. Adv Mater Technol 4:1900275. https://doi.org/10.1002/admt.201900275

    Article  Google Scholar 

  24. Waldbaur A, Rapp H, Länge K, Rapp BE (2011) Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3:2681–2716. https://doi.org/10.1039/c1ay05253e

    Article  Google Scholar 

  25. Chan HN, Tan MJA, Wu H (2017) Point-of-care testing: applications of 3D printing. Lab Chip 17:2713–2739. https://doi.org/10.1039/c7lc00397h

    Article  Google Scholar 

  26. Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–1301. https://doi.org/10.1039/c3lc51360b

    Article  Google Scholar 

  27. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86:3124–3130. https://doi.org/10.1021/ac4041857

    Article  Google Scholar 

  28. Nelson MD, Ramkumar N, Gale BK (2019) Flexible, transparent, sub-100 µm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. J Micromech Microeng 29:095010. https://doi.org/10.1088/1361-6439/AB2F26

    Article  Google Scholar 

  29. Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci 111:15013–15018. https://doi.org/10.1073/pnas.1414764111

    Article  Google Scholar 

  30. Rhee M, Burns MA (2008) Microfluidic assembly blocks. Lab Chip 8:1365–1373. https://doi.org/10.1039/b805137b

    Article  Google Scholar 

  31. Langelier SM, Livak-Dahl E, Manzo AJ, Johnson BN, Walter NG, Burns MA (2011) Flexible casting of modular self-aligning microfluidic assembly blocks. Lab Chip 11:1679–1687. https://doi.org/10.1039/c0lc00517g

    Article  Google Scholar 

  32. Grodzinski P, Yang J, Liu RH, Ward MD (2003) A modular microfluidic system for cell pre-concentration and genetic sample preparation. Biomed Microdev 5:303–310. https://doi.org/10.1023/A:1027357713526

    Article  Google Scholar 

  33. Sun K, Wang Z, Jiang X (2008) Modular microfluidics for gradient generation. Lab Chip 8:1536–1543. https://doi.org/10.1039/b806140h

    Article  Google Scholar 

  34. Yuen PK (2008) SmartBuild—a truly plug-n-play modular microfluidic system. Lab Chip 8:1374–1378. https://doi.org/10.1039/b805086d

    Article  Google Scholar 

  35. Vittayarukskul K, Lee AP (2017) A truly Lego®-like modular microfluidics platform. J Micromech Microeng 27:035004. https://doi.org/10.1088/1361-6439/AA53ED

    Article  Google Scholar 

  36. Bressan LP, Adamo CB, Quero RF, De Jesus DP, Da Silva JAF (2019) A simple procedure to produce FDM-based 3D-printed microfluidic devices with an integrated PMMA optical window. Anal Methods 11:1014–1020. https://doi.org/10.1039/c8ay02092b

    Article  Google Scholar 

  37. Cheon J, Kim S (2019) Intermediate layer-based bonding techniques for polydimethylsiloxane/digital light processing 3D-printed microfluidic devices. J Micromech Microeng 29:095005. https://doi.org/10.1088/1361-6439/ab27d3

    Article  Google Scholar 

  38. Brennan MD, Rexius-Hall ML, Eddington DT (2015) A 3D-printed oxygen control insert for a 24-well plate. PLoS ONE 10:e0137631. https://doi.org/10.1371/journal.pone.0137631

    Article  Google Scholar 

  39. Lee H, Cho DW (2016) One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16:2618–2625. https://doi.org/10.1039/c6lc00450d

    Article  Google Scholar 

  40. Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S (2009) Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 81:3714–3722. https://doi.org/10.1021/ac802178u

    Article  Google Scholar 

  41. Pranzo D, Larizza P, Filippini D, Percoco G (2018) Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: a topical review. Micromachines. https://doi.org/10.3390/mi9080374

    Article  Google Scholar 

  42. Gu Z, Fu J, Lin H, He Y (2019) Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. https://doi.org/10.1016/j.ajps.2019.11.003

    Article  Google Scholar 

  43. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  Google Scholar 

  44. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  Google Scholar 

  45. Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK (2018) FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal Chem 90:10450–10456. https://doi.org/10.1021/acs.analchem.8b02356

    Article  Google Scholar 

  46. Kitson PJ, Symes MD, Dragone V, Cronin L (2013) Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem Sci 4:3099–3103. https://doi.org/10.1039/c3sc51253c

    Article  Google Scholar 

  47. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab Chip 12:3267–3271. https://doi.org/10.1039/c2lc40761b

    Article  Google Scholar 

  48. Yuen PK (2016) Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 10:044104. https://doi.org/10.1063/1.4958909

    Article  Google Scholar 

  49. Gaal G, Mendes M, de Almeida TP, Piazzetta MHO, Gobbi ÂL, Riul A, Rodrigues V (2017) Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sens Actuators B Chem 242:35–40. https://doi.org/10.1016/j.snb.2016.10.110

    Article  Google Scholar 

  50. Li F, Smejkal P, Macdonald NP, Guijt RM, Breadmore MC (2017) One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing. Anal Chem 89:4701–4707. https://doi.org/10.1021/acs.analchem.7b00409

    Article  Google Scholar 

  51. Bressan LP, Lima TM, da Silveira GD, da Silva JAF (2020) Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core–shell nanoparticles. SN Appl Sci 2:1–8. https://doi.org/10.1007/s42452-020-2768-2

    Article  Google Scholar 

  52. Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E (2017) Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. Anal Chem 89:7053–7061. https://doi.org/10.1021/acs.analchem.7b00828

    Article  Google Scholar 

  53. Ye J, Chu T, Chu J, Gao B, He B (2019) A versatile approach for enzyme immobilization using chemically modified 3D-printed scaffolds. ACS Sustain Chem Eng 7:18048–18054. https://doi.org/10.1021/acssuschemeng.9b04980

    Article  Google Scholar 

  54. Saggiomo V, Velders AH (2015) Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci 2:1500125. https://doi.org/10.1002/advs.201500125

    Article  Google Scholar 

  55. Tang W, Fan N, Yang J, Li Z, Zhu L, Jiang D, Shi J, Xiang N (2019) Elasto-inertial particle focusing in 3D-printed microchannels with unconventional cross sections. Microfluid Nanofluid 23:42. https://doi.org/10.1007/s10404-019-2205-2

    Article  Google Scholar 

  56. Goh WH, Hashimoto M (2018a) Fabrication of 3D microfluidic channels and in-channel features using 3D printed, water-soluble sacrificial mold. Macromol Mater Eng 303:1700484. https://doi.org/10.1002/mame.201700484

    Article  Google Scholar 

  57. Goh W, Hashimoto M (2018b) Dual sacrificial molding: fabricating 3D microchannels with overhang and helical features. Micromachines 9:523. https://doi.org/10.3390/mi9100523

    Article  Google Scholar 

  58. Shankles PG, Millet LJ, Aufrecht JA, Retterer ST (2018) Accessing microfluidics through feature-based design software for 3D printing. PLoS One 13:e0192752. https://doi.org/10.1371/journal.pone.0192752

    Article  Google Scholar 

  59. Morgan AJL, San Jose LH, Jamieson WD, Wymant JM, Song B, Stephens P, Barrow DA, Castell OK (2016) Simple and versatile 3D printed microfluidics using fused filament fabrication. PLoS ONE 11:e0152023. https://doi.org/10.1371/journal.pone.0152023

    Article  Google Scholar 

  60. Tsuda S, Jaffery H, Doran D, Hezwani M, Robbins PJ, Yoshida M, Cronin L (2015) Customizable 3D printed ‘plug and play’ millifluidic devices for programmable fluidics. PLoS One 10:e0141640. https://doi.org/10.1371/journal.pone.0141640

    Article  Google Scholar 

  61. Nie J, Gao Q, Qiu JJ, Sun M, Liu A, Shao L, Fu JZ, Zhao P, He Y (2018) 3D printed Lego® -like modular microfluidic devices based on capillary driving. Biofabrication 10:035001. https://doi.org/10.1088/1758-5090/aaadd3

    Article  Google Scholar 

  62. Ching T, Li Y, Karyappa R, Ohno A, Toh YC, Hashimoto M (2019) Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sens Actuators B Chem 297:126609. https://doi.org/10.1016/j.snb.2019.05.086

    Article  Google Scholar 

  63. Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, McAlpine MC (2016) 3D printed nervous system on a chip. Lab Chip 16:1393–1400. https://doi.org/10.1039/c5lc01270h

    Article  Google Scholar 

  64. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271. https://doi.org/10.1038/nmat863

    Article  Google Scholar 

  65. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585. https://doi.org/10.1038/nmat1934

    Article  Google Scholar 

  66. He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluidics 19:447–456. https://doi.org/10.1007/s10404-015-1571-7

    Article  Google Scholar 

  67. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774. https://doi.org/10.1038/nmat3357

    Article  Google Scholar 

  68. Gelber MK, Bhargava R (2015) Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt. Lab Chip 15:1736–1741. https://doi.org/10.1039/c4lc01392a

    Article  Google Scholar 

  69. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183. https://doi.org/10.1002/adma.201004625

    Article  Google Scholar 

  70. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D Bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. https://doi.org/10.1002/adma.201305506

    Article  Google Scholar 

  71. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211. https://doi.org/10.1039/c4lc00030g

    Article  Google Scholar 

  72. Formlabs.com SLA vs. DLP: Guide to Resin 3D Printers | Formlabs. https://formlabs.com/blog/resin-3d-printer-comparison-sla-vs-dlp/. Accessed 9 Apr 2020

  73. Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG, Nallapatti U, Samitier J, Deforest CA, Posas F, Garcia-Cordero JL, Folch A (2016) 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16:2287–2294. https://doi.org/10.1039/c6lc00153j

    Article  Google Scholar 

  74. Kuo AP, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A (2019) High-precision stereolithography of biomicrofluidic devices. Adv Mater Technol 4:1–11. https://doi.org/10.1002/admt.201800395

    Article  Google Scholar 

  75. Kim YT, Bohjanen S, Bhattacharjee N, Folch A (2019) Partitioning of hydrogels in 3D-printed microchannels. Lab Chip 19:3086–3093. https://doi.org/10.1039/c9lc00535h

    Article  Google Scholar 

  76. Gong H, Bickham BP, Woolley AT, Nordin GP (2017) Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17:2899–2909. https://doi.org/10.1039/c7lc00644f

    Article  Google Scholar 

  77. Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv Mater 30:1–7. https://doi.org/10.1002/adma.201800001

    Article  Google Scholar 

  78. Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A (2015) 3D-printed microfluidic automation. Lab Chip 15:1934–1941. https://doi.org/10.1039/c5lc00126a

    Article  Google Scholar 

  79. Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9:016501. https://doi.org/10.1063/1.4905840

    Article  Google Scholar 

  80. Chen Z, Han JY, Shumate L, Fedak R, DeVoe DL (2019) High throughput nanoliposome formation using 3D printed microfluidic flow focusing chips. Adv Mater Technol 4:1800511. https://doi.org/10.1002/admt.201800511

    Article  Google Scholar 

  81. Kamperman T, Teixeira LM, Salehi SS, Kerckhofs G, Guyot Y, Geven M, Geris L, Grijpma D, Blanquer S, Leijten J (2020) Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing. Lab Chip 20:490–495. https://doi.org/10.1039/c9lc00980a

    Article  Google Scholar 

  82. Chiadò A, Palmara G, Chiappone A, Tanzanu C, Pirri CF, Roppolo I, Frascella F (2020) A modular 3D printed lab-on-a-chip for early cancer detection. Lab Chip 20:665–674. https://doi.org/10.1039/c9lc01108k

    Article  Google Scholar 

  83. Nichols DA, Sondh IS, Litte SR, Zunino P, Gottardi R (2018) Design and validation of an osteochondral bioreactor for the screening of treatments for osteoarthritis. Biomed Microdev. https://doi.org/10.1007/s10544-018-0264-x

    Article  Google Scholar 

  84. Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, Tasoglu S (2016) 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication 8:1–13. https://doi.org/10.1088/1758-5090/8/2/025019

    Article  Google Scholar 

  85. Ong LJY, Islam A, Dasgupta R, Iyer NG, Leo HL, Toh YC (2017) A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication 9:045005. https://doi.org/10.1088/1758-5090/aa8858

    Article  Google Scholar 

  86. Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430. https://doi.org/10.1039/c3lc50956g

    Article  Google Scholar 

  87. Razavi Bazaz S, Kashaninejad N, Azadi S, Patel K, Asadnia M, Jin D, Ebrahimi Warkiani M (2019) Rapid soft lithography using 3D-printed molds. Adv Mater Technol 4:1900425. https://doi.org/10.1002/admt.201900425

    Article  Google Scholar 

  88. Hernández Vera R, O’Callaghan P, Fatsis-Kavalopoulos N, Kreuger J (2019) Modular microfluidic systems cast from 3D-printed molds for imaging leukocyte adherence to differentially treated endothelial cultures. Sci Rep. https://doi.org/10.1038/s41598-019-47475-z

    Article  Google Scholar 

  89. Mohamed M, Kumar H, Wang Z, Martin N, Mills B, Kim K (2019) Rapid and inexpensive fabrication of multi-depth microfluidic device using high-resolution LCD stereolithographic 3D printing. J Manuf Mater Process 3:26. https://doi.org/10.3390/jmmp3010026

    Article  Google Scholar 

  90. Ching T, Toh YC, Hashimoto M (2020) Fabrication of complex 3D fluidic networks via modularized stereolithography. Adv Eng Mater 22:1901109. https://doi.org/10.1002/adem.201901109

    Article  Google Scholar 

  91. Custompart.net Jetted Photopolymer. http://www.custompartnet.com/wu/jetted-photopolymer. Accessed 8 Apr 2020

  92. Facfox PolyJet vs MultiJet Printing(MJP)—FacFox. https://facfox.com/docs/polyjet-mjp-comparison. Accessed 8 Apr 2020

  93. 3dsystems Our Story | 3D Systems. https://www.3dsystems.com/our-story. Accessed 8 Apr 2020

  94. Enders A, Siller IG, Urmann K, Hoffmann MR, Bahnemann J (2019) 3D printed microfluidic mixers—a comparative study on mixing unit performances. Small 15:1804326. https://doi.org/10.1002/smll.201804326

    Article  Google Scholar 

  95. Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85:5622–5626. https://doi.org/10.1021/ac4009594

    Article  Google Scholar 

  96. Barbaresco F, Cocuzza M, Pirri CF, Marasso SL (2020) Application of a micro free-flow electrophoresis 3D printed lab-on-a-chip for micro-nanoparticles analysis. Nanomaterials 10:1277. https://doi.org/10.3390/nano10071277

    Article  Google Scholar 

  97. Ji Q, Zhang JM, Liu Y, Li X, Lv P, Jin D, Duan H (2018) A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22756-1

    Article  Google Scholar 

  98. Keating SJ, Gariboldi MI, Patrick WG, Sharma S, Kong DS, Oxman N (2016) 3D printed multimaterial microfluidic valve. PLoS One 11:e0160624. https://doi.org/10.1371/journal.pone.0160624

    Article  Google Scholar 

  99. IchiroMashimoKoyamaFockenbergNakashimaNakajimaLiChen KKYYCMMJY (2015) 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed Microdev 17:36. https://doi.org/10.1007/s10544-015-9928-y

    Article  Google Scholar 

  100. Glick CC, Srimongkol MT, Schwartz AJ, Zhuang WS, Lin JC, Warren RH, Tekell DR, Satamalee PA, Lin L (2016) Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding. Microsystems Nanoeng 2:1–9. https://doi.org/10.1038/micronano.2016.63

    Article  Google Scholar 

  101. Brossard R, Brouchet T, Malloggi F (2019) Replication of a printed volatile mold: a novel microfabrication method for advanced microfluidic systems. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-53729-7

    Article  Google Scholar 

  102. Hwang Y, Paydar OH, Candler RN (2015) 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A Phys 226:137–142. https://doi.org/10.1016/j.sna.2015.02.028

    Article  Google Scholar 

  103. Li Z, Yang J, Li K, Zhu L, Tang W (2017) Fabrication of PDMS microfluidic devices with 3D wax jetting. RSC Adv 7:3313–3320. https://doi.org/10.1039/C6RA24884E

    Article  Google Scholar 

  104. Sunkara V, Park DK, Hwang H, Chantiwas R, Soper SA, Cho YK (2011) Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11:962–965. https://doi.org/10.1039/c0lc00272k

    Article  Google Scholar 

  105. Ahn SY, Lee NY (2015) Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker. J Micromech Microeng 25:075007. https://doi.org/10.1088/0960-1317/25/7/075007

    Article  Google Scholar 

  106. Kim K, Park SW, Yang SS (2010) The optimization of PDMS-PMMA bonding process using silane primer. Biochip J 4:148–154. https://doi.org/10.1007/s13206-010-4210-0

    Article  Google Scholar 

  107. Vlachopoulou ME, Tserepi A, Pavli P, Argitis P, Sanopoulou M, Misiakos K (2009) A low temperature surface modification assisted method for bonding plastic substrates. J Micromech Microeng 19:015007. https://doi.org/10.1088/0960-1317/19/1/015007

    Article  Google Scholar 

  108. Tang L, Lee NY (2010) A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip 10:1274–1280. https://doi.org/10.1039/b924753j

    Article  Google Scholar 

  109. Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505. https://doi.org/10.1039/b618901f

    Article  Google Scholar 

  110. Duong LH, Chen PC (2019) Simple and low-cost production of hybrid 3D-printed microfluidic devices. Biomicrofluidics 13:024108. https://doi.org/10.1063/1.5092529

    Article  Google Scholar 

  111. Lynh HD, Pin-Chuan C (2018) Novel solvent bonding method for creation of a three-dimensional, non-planar, hybrid PLA/PMMA microfluidic chip. Sens Actuators A Phys 280:350–358. https://doi.org/10.1016/j.sna.2018.08.002

    Article  Google Scholar 

  112. Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC, de Jesus DP, da Silva JAF (2019) 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles. Microchem J 146:1083–1089. https://doi.org/10.1016/j.microc.2019.02.043

    Article  Google Scholar 

  113. Kecili S, Tekin HC (2020) Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device. Biomicrofluidics 14:024113. https://doi.org/10.1063/5.0003302

    Article  Google Scholar 

  114. Carrell CS, McCord CP, Wydallis RM, Henry CS (2020) Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of microfluidic devices. Anal Chim Acta 1124:78–84. https://doi.org/10.1016/j.aca.2020.05.014

    Article  Google Scholar 

  115. Beckwith AL, Borenstein JT, Velasquez-Garcia LF (2018) Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments. J Microelectromech Syst 27:1009–1022. https://doi.org/10.1109/JMEMS.2018.2869327

    Article  Google Scholar 

  116. Shrestha J, Ghadiri M, Shanmugavel M, Bazaz SR, Vasilescu S, Ding L, Warkiani ME (2020) A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip 1:100001. https://doi.org/10.1016/j.ooc.2020.100001

    Article  Google Scholar 

  117. Fang G, Lu H, Law A, Gallego-Ortega D, Jin D, Lin G (2019) Gradient-sized control of tumor spheroids on a single chip. Lab Chip 19:4093–4103. https://doi.org/10.1039/c9lc00872a

    Article  Google Scholar 

  118. Ruppen J, Wildhaber FD, Strub C, Hall SRR, Schmid RA, Geiser T, Guenat OT (2015) Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip 15:3076–3085. https://doi.org/10.1039/c5lc00454c

    Article  Google Scholar 

  119. Ukita Y, Takamura Y, Utsumi Y (2016) Direct digital manufacturing of autonomous centrifugal microfluidic device. In: Japanese Journal of Applied Physics. Japan Society of Applied Physics, p 06GN02

  120. Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP (2015) Optical approach to resin formulation for 3D printed microfluidics. RSC Adv 5:106621–106632. https://doi.org/10.1039/c5ra23855b

    Article  Google Scholar 

  121. Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science (80-) 364:458–464. https://doi.org/10.1126/science.aav9750

    Article  Google Scholar 

  122. Tothill AM, Partridge M, James SW, Tatam RP (2017) Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. J Micromech Microeng 27:035018. https://doi.org/10.1088/1361-6439/AA5AE3

    Article  Google Scholar 

  123. Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D (2015) Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics 9:061103. https://doi.org/10.1063/1.4939031

    Article  Google Scholar 

  124. Rimington RP, Capel AJ, Christie SDR, Lewis MP (2017) Biocompatible 3D printed polymers: via fused deposition modelling direct C2C12 cellular phenotype in vitro. Lab Chip 17:2982–2993. https://doi.org/10.1039/c7lc00577f

    Article  Google Scholar 

  125. de Almeida Monteiro Melo FerrazNagashimaVenzacLe GacSongsasen MJBBSN (2020) 3D printed mold leachates in PDMS microfluidic devices. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-57816-y

    Article  Google Scholar 

  126. Gross BC, Anderson KB, Meisel JE, McNitt MI, Spence DM (2015) Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis. Anal Chem 87:6335–6341. https://doi.org/10.1021/acs.analchem.5b01202

    Article  Google Scholar 

  127. MacDonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, Wlodkowic D, Cooper JM (2016) Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip 16:291–297. https://doi.org/10.1039/c5lc01374g

    Article  Google Scholar 

  128. Leonhardt S, Klare M, Scheer M, Fischer T, Cordes B, Eblenkamp M (2016) Biocompatibility of photopolymers for additive manufacturing. Curr Dir Biomed Eng. https://doi.org/10.1515/cdbme-2016-0028

    Article  Google Scholar 

  129. Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC (2017) Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem 89:3858–3866. https://doi.org/10.1021/acs.analchem.7b00136

    Article  Google Scholar 

  130. Armstrong C Post processing for FDM printed parts | 3D Hubs. https://www.3dhubs.com/knowledge-base/post-processing-fdm-printed-parts/. Accessed 30 Apr 2020

  131. Lalehpour A, Janeteas C, Barari A (2018) Surface roughness of FDM parts after post-processing with acetone vapor bath smoothing process. Int J Adv Manuf Technol 95:1505–1520. https://doi.org/10.1007/s00170-017-1165-5

    Article  Google Scholar 

  132. Villegas M, Cetinic Z, Shakeri A, Didar TF (2018) Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Anal Chim Acta 1000:248–255. https://doi.org/10.1016/j.aca.2017.11.063

    Article  Google Scholar 

  133. Van Midwoud PM, Janse A, Merema MT, Groothuis GMM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944. https://doi.org/10.1021/ac300771z

    Article  Google Scholar 

  134. Özçam AE, Efimenko K, Genzer J (2014) Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. Polymer (Guildf) 55:3107–3119. https://doi.org/10.1016/j.polymer.2014.05.027

    Article  Google Scholar 

  135. Wilhelm E, Neumann C, Sachsenheimer K, Schmitt T, Länge K, Rapp BE (2013) Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer. Lab Chip 13:2268–2271. https://doi.org/10.1039/c3lc50341k

    Article  Google Scholar 

  136. Perez M, Block M, Espalin D, Winker R, Hoppe T, Medina F, Wicker R (2012) Sterilization of fdm-manufactured parts. In: 23rd annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF 2012. pp 285–296

  137. Walleser M Sterile 3D Printing for Medical Applications and Sterile Outcomes. https://blog.gotopac.com/2017/05/22/sterile-materials-and-outcomes-for-3d-printing-sterile-parts/. Accessed 30 Apr 2020

  138. Beckwith AL, Velásquez-García LF, Borenstein JT (2019) Microfluidic model for evaluation of immune checkpoint inhibitors in human tumors. Adv Healthc Mater 8:1900289. https://doi.org/10.1002/adhm.201900289

    Article  Google Scholar 

  139. Smith LJ, Li P, Holland MR, Ekser B (2018) FABRICA: a bioreactor platform for printing, perfusing, observing, & stimulating 3D tissues. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25663-7

    Article  Google Scholar 

  140. Ochs CJ, Kasuya J, Pavesi A, Kamm RD (2014) Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab Chip 14:459–462. https://doi.org/10.1039/c3lc51160j

    Article  Google Scholar 

  141. Kim L, Toh YC, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7:681–694. https://doi.org/10.1039/b704602b

    Article  Google Scholar 

  142. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101. https://doi.org/10.1088/1758-5090/8/1/014101

    Article  Google Scholar 

  143. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113:3179–3184. https://doi.org/10.1073/PNAS.1521342113

    Article  Google Scholar 

  144. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438. https://doi.org/10.1002/adhm.201600095

    Article  Google Scholar 

  145. Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, Feng GS, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113:2206–2211. https://doi.org/10.1073/pnas.1524510113

    Article  Google Scholar 

  146. Jang K-J, Otieno MA, Ronxhi J, Lim H-K, Ewart L, Kodella KR, Petropolis DB, Kulkarni G, Rubins JE, Conegliano D, Nawroth J, Simic D, Lam W, Singer M, Barale E, Singh B, Sonee M, Streeter AJ, Manthey C, Jones B, Srivastava A, Andersson LC, Williams D, Park H, Barrile R, Sliz J, Herland A, Haney S, Karalis K, Ingber DE, Hamilton GA (2019) Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med 11:5516. https://doi.org/10.1126/scitranslmed.aax5516

    Article  Google Scholar 

  147. Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, Sanchez H, McCrea HJ, Goumnerova LC, Song HW, Palecek SP, Shusta E, Ingber DE (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-10588-0

    Article  Google Scholar 

  148. Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P, Ferguson D, MacDonald A, Vargel Bölükbaşı Ö, Joyce CE, Moreira Teixeira LS, Rech A, Jiang A, Calamari E, Jalili-Firoozinezhad S, Furlong BA, O’Sullivan LR, Ng CF, Choe Y, Marquez S, Myers KC, Weinberg OK, Hasserjian RP, Novak R, Levy O, Prantil-Baun R, Novina CD, Shimamura A, Ewart L, Ingber DE (2020) On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 4:394–406. https://doi.org/10.1038/s41551-019-0495-z

    Article  Google Scholar 

  149. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157. https://doi.org/10.1038/nmeth.3697

    Article  Google Scholar 

  150. Bakarich SE, Gorkin R, Gately R, Naficy S, in het PanhuisSpinks MGM (2017) 3D printing of tough hydrogel composites with spatially varying materials properties. Addit Manuf 14:24–30. https://doi.org/10.1016/j.addma.2016.12.003

    Article  Google Scholar 

  151. Mogas-Soldevila L, Duro-Royo J, Oxman N (2016) Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print Addit Manuf 1:141–151. https://doi.org/10.1089/3dp.2014.0014

    Article  Google Scholar 

  152. Ober TJ, Foresti D, Lewis JA (2015) Active mixing of complex fluids at the microscale. Proc Natl Acad Sci U S A 112:12293–12298. https://doi.org/10.1073/pnas.1509224112

    Article  Google Scholar 

  153. Elbaz A, He Z, Gao B, Chi J, Su E, Zhang D, Liu S, Xu H, Liu H, Gu Z (2018) Recent biomedical applications of bio-sourced materials. Bio-Design Manuf 1:26–44. https://doi.org/10.1007/s42242-018-0002-5

    Article  Google Scholar 

  154. Moeinzadeh S, Pajoum Shariati SR, Jabbari E (2016) Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 92:57–70. https://doi.org/10.1016/j.biomaterials.2016.03.034

    Article  Google Scholar 

  155. Jung JW, Lee JS, Cho DW (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6:1–9. https://doi.org/10.1038/srep21685

    Article  Google Scholar 

  156. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008

    Article  Google Scholar 

  157. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science (80-) 324:1673–1677. https://doi.org/10.1126/science.1171643

    Article  Google Scholar 

  158. Kshitiz PJ, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol UK 4:1008–1018. https://doi.org/10.1039/c2ib20080e

    Article  Google Scholar 

  159. Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X (2019) Regulation and directing stem cell fate by tissue engineering functional microenvironments: scaffold physical and chemical cues. Stem Cells Int. https://doi.org/10.1155/2019/2180925

    Article  Google Scholar 

  160. Shi X, Zhou J, Zhao Y, Li L, Wu H (2013) Gradient-regulated hydrogel for interface tissue engineering: steering simultaneous osteo/chondrogenesis of stem cells on a chip. Adv Healthc Mater 2:846–853. https://doi.org/10.1002/adhm.201200333

    Article  Google Scholar 

  161. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  162. Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415. https://doi.org/10.1083/jcb.133.6.1403

    Article  Google Scholar 

  163. Lessey EC, Guilluy C, Burridge K (2012) From mechanical force to RhoA activation. Biochemistry 51:7420–7432. https://doi.org/10.1021/bi300758e

    Article  Google Scholar 

  164. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in rho-induced actin reorganization. Nat Cell Biol 1:136–143. https://doi.org/10.1038/11056

    Article  Google Scholar 

  165. Bhadriraju K, Yang M, Ruiz SA, Pirone D, Tan J, Chen CS (2007) Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp Cell Res. https://doi.org/10.1016/J.YEXCR.2007.07.002

    Article  Google Scholar 

  166. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495. https://doi.org/10.1016/S1534-5807(04)00075-9

    Article  Google Scholar 

  167. Keselowsky BG, Collard DM, García AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A 102:5953–5957. https://doi.org/10.1073/pnas.0407356102

    Article  Google Scholar 

  168. Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823. https://doi.org/10.1038/nmat2269

    Article  Google Scholar 

  169. Jaidev LR, Chatterjee K (2019) Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des 161:44–54. https://doi.org/10.1016/j.matdes.2018.11.018

    Article  Google Scholar 

  170. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK (2015) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:1–13. https://doi.org/10.1038/boneres.2014.17

    Article  Google Scholar 

  171. Chen X, Wang J, Chen Y, Cai H, Yang X, Zhu X, Fan Y, Zhang X (2016) Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B 4:2280–2289. https://doi.org/10.1039/c6tb00349d

    Article  Google Scholar 

  172. Tang Z, Wang Z, Qing F, Ni Y, Fan Y, Tan Y, Zhang X (2015) Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed Mater Res Part A 103:1001–1010. https://doi.org/10.1002/jbm.a.35242

    Article  Google Scholar 

  173. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557. https://doi.org/10.1038/nmat3937

    Article  Google Scholar 

  174. Guenat OT, Berthiaume F (2018) Incorporating mechanical strain in organs-on-a-chip: lung and skin. Biomicrofluidics 12:042207. https://doi.org/10.1063/1.5024895

    Article  Google Scholar 

  175. Occhetta P, Mainardi A, Votta E, Vallmajo-Martin Q, Ehrbar M, Martin I, Barbero A, Rasponi M (2019) Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng 3:545–557. https://doi.org/10.1038/s41551-019-0406-3

    Article  Google Scholar 

  176. Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3:84–100. https://doi.org/10.1038/s41578-018-0002-2

    Article  Google Scholar 

  177. Cianchetti M, Laschi C, Menciassi A, Dario P (2018) Biomedical applications of soft robotics. Nat Rev Mater 3:143–153. https://doi.org/10.1038/s41578-018-0022-y

    Article  Google Scholar 

  178. Sun L, Chen Z, Bian F, Zhao Y (2020) Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv Funct Mater 30:1907820. https://doi.org/10.1002/adfm.201907820

    Article  Google Scholar 

  179. Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M, Baharvand H (2018) Personalized cancer medicine: an organoid approach. Trends Biotechnol 36:358–371. https://doi.org/10.1016/j.tibtech.2017.12.005

    Article  Google Scholar 

  180. Astolfi M, Péant B, Lateef MA, Rousset N, Kendall-Dupont J, Carmona E, Monet F, Saad F, Provencher D, Mes-Masson AM, Gervais T (2016) Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy. Lab Chip 16:312–325. https://doi.org/10.1039/c5lc01108f

    Article  Google Scholar 

  181. Moore N, Doty D, Zielstorff M, Kariv I, Moy LY, Gimbel A, Chevillet JR, Lowry N, Santos J, Mott V, Kratchman L, Lau T, Addona G, Chen H, Borenstein JT (2018) A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions. Lab Chip 18:1844–1858. https://doi.org/10.1039/c8lc00256h

    Article  Google Scholar 

  182. Yi HG, Jeong YH, Kim Y, Choi YJ, Moon HE, Park SH, Kang KS, Bae M, Jang J, Youn H, Paek SH, Cho DW (2019) A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 3:509–519. https://doi.org/10.1038/s41551-019-0363-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Prime Minister’s Research Fellowship (PMRF) provided by the Ministry of Human Resource Development (MHRD, Govt. of India). We thank Sukanya V S for her valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VM was involved in conceptualization, writing—original draft, and visualization; VM and SNR helped in writing—review & editing; and SNR contributed to supervision.

Corresponding author

Correspondence to Subha N. Rath.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V., Rath, S.N. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-des. Manuf. 4, 311–343 (2021). https://doi.org/10.1007/s42242-020-00112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00112-5

Keywords

Navigation