Skip to main content
Log in

Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, we developed a convenient, one-step soft-lithographic-based molding technique for molding truly 3D microfluidic channels in polydimethylsiloxane (PDMS) by overcoming two grand challenges. We optimized the post-treatment conditions for 3D-printed resin structures to facilitate the use of them as masters for PDMS replica molding. What is more important, we demonstrated a novel method for single-step molding from 3D-printed microstructures to generate truly 3D microfluidic networks easily. With this technique, we fabricated some key, functional 3D microfluidic structures and components including a basket-weaving network, a 3D chaotic advective mixer and microfluidic peristaltic valves. Furthermore, an interesting “injection-on-demand” microfluidic device was also demonstrated. Our technique offers a simple, fast route to the fabrication of 3D microfluidic chips in a short time without clean-room facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164

    Article  Google Scholar 

  • Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85:5622–5626. doi:10.1021/ac4009594

    Article  Google Scholar 

  • Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–1301. doi:10.1039/c3lc51360b

    Article  Google Scholar 

  • Cannon DM, Kuo T, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230. doi:10.1021/ac020629f

    Article  Google Scholar 

  • Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84:2193–2195. doi:10.1063/1.1686895

    Article  Google Scholar 

  • Chen C, Wang Y, Lockwood SY, Spence DM (2014) 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 139:3219–3226. doi:10.1039/c3an02357e

    Article  Google Scholar 

  • Chiu DT, Jeon NL, Huang S et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci USA 97:2408–2413. doi:10.1073/pnas.040562297

    Article  Google Scholar 

  • Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430. doi:10.1039/c3lc50956g

    Article  Google Scholar 

  • Conlisk K, O’Connor GM (2012) Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser. Microfluid Nanofluidics 12:941–951. doi:10.1007/s10404-011-0928-9

    Article  Google Scholar 

  • Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:067001. doi:10.1088/0960-1317/18/6/067001

    Article  Google Scholar 

  • Erkal JL, Selimovic A, Gross BC et al (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip. doi:10.1039/c4lc00171k

    Google Scholar 

  • Esser-Kahn AP, Thakre PR, Dong H et al (2011) Three-dimensional microvascular fiber-reinforced composites. Adv Mater 23:3654–3658. doi:10.1002/adma.201100933

    Article  Google Scholar 

  • Femmer T, Kuehne AJC, Wessling M (2014) Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip 14:2610–2613. doi:10.1039/c4lc00320a

    Article  Google Scholar 

  • Fu AY, Chou H-P, Spence C et al (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457. doi:10.1021/ac0255330

    Article  Google Scholar 

  • Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536. doi:10.1073/pnas.262485199

    Article  Google Scholar 

  • Hong JW, Studer V, Hang G et al (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439. doi:10.1038/nbt951

    Article  Google Scholar 

  • Huang B, Wu H, Bhaya D et al (2007) Counting low-copy number proteins in a single cell. Science 315:81–84. doi:10.1126/science.1133992

    Article  Google Scholar 

  • Jo B-H, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Microelectromech Syst J 9:76–81. doi:10.1109/84.825780

    Article  Google Scholar 

  • Kartalov EP, Quake SR (2004) Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucleic Acids Res 32:2873–2879. doi:10.1093/nar/gkh613

    Article  Google Scholar 

  • Kartalov E, Zhong J, Scherer A et al (2006) High-throughput multi-antigen microfluidic fluorescence immunoassays. Biotechniques 40:85–90. doi:10.2144/000112071

    Article  Google Scholar 

  • Kitson PJ, Rosnes MH, Sans V et al (2012) Configurable 3D-Printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab Chip 12:3267–3271. doi:10.1039/c2lc40761b

    Article  Google Scholar 

  • Kitson PJ, Marshall RJ, Long D et al (2014) 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew Chem Int Ed Engl 12723–12728. doi:10.1002/anie.201402654

  • LaFratta CN, Li L, Fourkas JT (2006) Soft-lithographic replication of 3D microstructures with closed loops. Proc Natl Acad Sci USA 103:8589–8594. doi:10.1073/pnas.0603247103

    Article  Google Scholar 

  • Lee J, Paek J, Kim J (2012) Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices. Lab Chip 12:2638–2642. doi:10.1039/c2lc40267j

    Article  Google Scholar 

  • Lee W, Kwon D, Chung B et al (2014) Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal Chem 86:6683–6688. doi:10.1021/ac501436d

    Article  Google Scholar 

  • Liu RH, Stremler MA, Sharp KV et al (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197. doi:10.1109/84.846699

    Article  Google Scholar 

  • Liu J, Hansen C, Quake SR (2003) Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal Chem 75:4718–4723

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611. doi:10.1073/pnas.0810903105

    Article  Google Scholar 

  • Mosadegh B, Kuo C-H, Tung Y-C et al (2010) Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat Phys 6:433–437. doi:10.1038/nphys1637

    Article  Google Scholar 

  • Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi:10.1021/ar300314s

    Article  Google Scholar 

  • Shallan AI, Smejkal P, Corban M et al (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86:3124–3130. doi:10.1021/ac4041857

    Article  Google Scholar 

  • Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271. doi:10.1038/nmat863

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. doi:10.1126/science.1076996

    Article  Google Scholar 

  • Unger MA, Chou H-P, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  • Verma MKS, Majumder A, Ghatak A (2006) Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:10291–10295. doi:10.1021/la062516n

    Article  Google Scholar 

  • Vijayendran RA, Motsegood KM, Beebe DJ, Leckband DE (2002) Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824–1828. doi:10.1021/la0262250

    Article  Google Scholar 

  • Wheeler AR, Throndset WR, Whelan RJ et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586

    Article  Google Scholar 

  • Wu H, Brittain S, Anderson J et al (2000) Fabrication of topologically complex three-dimensional microstructures: metallic microknots. J Am Chem Soc 122(51):12691–12699

    Article  Google Scholar 

  • Wu H, Odom TW, Chiu DT, Whitesides GM (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125:554–559. doi:10.1021/ja021045y

    Article  Google Scholar 

  • Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813. doi:10.1073/pnas.0405299101

    Article  Google Scholar 

  • Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183. doi:10.1002/adma.201004625

    Article  Google Scholar 

  • Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab Chip 5:748–755. doi:10.1039/b502031j

    Article  Google Scholar 

  • Xiong B, Ren K, Shu Y et al (2014) Recent developments in microfluidics for cell studies. Adv Mater 26:5525–5532. doi:10.1002/adma.201305348

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding provided by Hong Kong Research Grants Council (#605210, #604712 and CUHK4/CRF/12G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1271 kb)

Supplementary material 2 (MPG 24392 kb)

Supplementary material 3 (MPG 3296 kb)

Supplementary material 4 (MPG 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H.N., Chen, Y., Shu, Y. et al. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid Nanofluid 19, 9–18 (2015). https://doi.org/10.1007/s10404-014-1542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1542-4

Keywords

Navigation