Skip to main content
Log in

Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions

Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28–30, 2008 Pasadena, California

  • Position Paper
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in microfluidic technologies have opened the door for creating more realistic in vitro cell culture methods that replicate many aspects of the true in vivo microenvironment. These new designs (i) provide enormous flexibility in controlling the critical biochemical and biomechanical factors that influence cell behavior, (ii) allow for the introduction of multiple cell types in a single system, (iii) provide for the establishment of biochemical gradients in two- or three-dimensional geometries, and (iv) allow for high quality, time-lapse imaging. Here, some of the recent developments are reviewed, with a focus on studies from our own laboratory in three separate areas: angiogenesis, cell migration in the context of tumor cell-endothelial interactions, and liver tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

Notes

  1. Different from 2D migration, steps of 3D cell migration can be arranged in five steps; Pseudopod protrusion at the leading edge, formation of focal contact, focalized proteolysis, actomyosin contraction, and detachment of tailing edge.28 Cells on 2D flat substrate cannot have epithelial cell polarity, and also often have different patterns of gene expression. Growth, motility, differentiation, and morphogenesis are different due to 3D matrix-dependent regulation in 3D environments.92 For example, epithelial cells form 3D lumen structures with epithelial polarity and mesenchymal cells lie in the ECM. Two-dimensional migration models cannot represent the whole 3D structures and also 3D matrix-induced morphogenesis such as vessel sprouting and branching. Three-dimensional migration of tumor cell also has diversity of amoeboid migration, mesenchymal single cell or chain migration and other collective movements forming cluster or multicellular strands or sheets.28 Considering tissue engineering applications used to restore, maintain, or enhance tissues and organs, we need a better understanding of 3D structures and responses of cells.2,3,34,35,53,59 To engineer living tissues in vitro, cultured cell are coaxed to grow on bioactive degradable scaffolds that provide the physical and chemical cues to guide their differentiation and assembly into 3D tissues.35

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ECIS:

Electric cell-substrate impedance sensing

ECM:

Extracellular matrix

EC:

Endothelial cell

SEC:

Sinusoidal endothelial cell

EGF:

Epidermal growth factor

hMVEC:

Human microvascular endothelial cells

HSC:

Hepatic stellate cell

PDMS:

Polydimethylsiloxane

VEGF:

Vascular endothelial growth factor

References

  1. Albini, A. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47:3239–3245, 1987.

    PubMed  CAS  Google Scholar 

  2. Ateshia, G. A. Artificial cartilage: weaving in three dimensions. Nat. Mater. 6:89–90, 2007.

    Article  CAS  Google Scholar 

  3. Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Bayless, K. J., R. Salazar, and G. E. Davis. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins. Am. J. Pathol. 156:1673–1683, 2000.

    PubMed  CAS  Google Scholar 

  5. Bhatia, S. N., U. J. Balis, M. L. Yarmush, and M. Toner. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13:1883–1900, 1999.

    PubMed  CAS  Google Scholar 

  6. Bockhorn, M., R. K. Jain, and L. L. Munn. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 8:444–448, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Burns, A. R. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Immunol. 159:2893–2903, 1997.

    PubMed  CAS  Google Scholar 

  8. Burns, A. R., R. A. Bowden, S. D. MacDonell, D. C. Walker, T. O. Odebunmi, E. M. Donnachie, S. I. Simon, M. L. Entman, and C. W. Smith. Analysis of tight junctions during neutrophil transendothelial migration. J. Cell Sci. 113:45–57, 2000.

    PubMed  CAS  Google Scholar 

  9. Cabodi, M., N. W. Choi, J. P. Gleghorn, C. S. Lee, L. J. Bonassar, and A. D. Stroock. A microfluidic biomaterial. J. Am. Chem. Soc. 127:13788–13789, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Charrier, L., Y. Yan, A. Driss, C. L. Laboisse, S. V. Sitaraman, and D. Merlin. ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers. Am. J. Physiol-Gastrointest. Liver Physiol. 288:346–353, 2005.

    Article  CAS  Google Scholar 

  12. Cheng, S. Y., S. Heilman, M. Wasserman, S. Archer, M. L. Shuler, and M. Wu. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Chicurel, M. Cell biology. Cell migration research is on the move. Science 295(5555):606–609, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Choi, N. W., M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, and A. D. Stroock. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–915, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Chung, B. G., L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 5:401–406, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 9:269–275, 2009.

    Article  PubMed  CAS  Google Scholar 

  17. Colville-Nash, P. R., and D. L. Scott. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann. Rheum. Dis. 51:919–925, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Craighead, H. G., C. D. James, and A. M. P. Turner. Current Issues and Advances in Dissociated Cell Culturing on Nano- and Microfabricated Substrates. Advanced Semiconductor and Organic Nano-techniques, Vol. 5. New York: Academic Press, 2003, 251 pp

  19. Damji, A., L. Weston, and D. M. Brunett. Directed confrontations between fibroblasts and epithelial cells on micromachined grooved substrata. Exp. Cell Res. 228:114–124, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Davis, G. E., K. J. Bayless, and A. Mavila. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268:252–275, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Discher, D. E., P. Janmey, and Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Earley, S., and G. E. Plopper. Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem. Biophys. Res. Commun. 350:405–412, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Folkman, J. Looking for a good endothelial address. Cancer Cell 1:113–115, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6:273–286, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Frevert, C. W., G. Boggy, T. M. Keenan, and A. Folch. Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip. 6:849–856, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3:362–374, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Frisk, T., S. Rydholm, T. Liebmann, H. A. Svahn, G. Stemme, and H. Brismar. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 28:4705–4712, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Gomez-Sjoberg, R., A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79:8557–8563, 2007.

    Article  PubMed  CAS  Google Scholar 

  31. Gerber, D., S. J. Maerkl, and S. R. Quake. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6:71–74, 2008. doi:10.1038/nmeth.1289.

  32. Ghajar, C. M., K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Giaever, I., and C. R. Keese. Micromotion of mammalian cells measured electrically. Proc. Natl Acad. Sci. 88:7896–7900, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Gillette, B. M., J. A. Jensen, B. Tang, G. J. Yang, A. Bazargan-Lari, M. Zhong, and S. K. Sia. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat. Mater. 7:636–640, 2008.

    Article  PubMed  CAS  Google Scholar 

  35. Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Hadjout, N., G. Lacvsky, D. A. Knecht, and M. A. Lynes. Automated real-time measurement of chemotactic cell motility. Biotechniques 31:1130–1139, 2001.

    PubMed  CAS  Google Scholar 

  38. Helm, C. L. E., M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. 102:15779–15784, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Hong, S., E. Ergezen, R. Lec, and K. A. Barbee. Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator. Biomaterials 27:5813–5820, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Hughes, F. J., and C. A. McCulloch. Quantification of chemotactic response of quiescent and proliferating fibroblasts in Boyden chambers by computer-assisted image analysis. J. Histochem. Cytochem. 39:243–246, 1991.

    PubMed  CAS  Google Scholar 

  41. Hui, E. E., and S. N. Bhatia. From the cover: micromechanical control of cell–cell interactions. Proc. Natl. Acad. Sci. 104:5722, 2007.

    Article  PubMed  CAS  Google Scholar 

  42. Hwa, A. J., R. C. Fry, A. Sivaraman, P. T. So, L. D. Samson, D. B. Stolz, and L. G. Griffith. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J. 21:2564, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Ito, Y. Surface micropatterning to regulate cell functions. Biomaterials 20:2333–2342, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. Jeon, N. L., H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826–830, 2002.

    CAS  Google Scholar 

  45. Junqueira, L. C. U., and J. Carneiro. Basic Histology: Text & Atlas. New York: McGraw-Hill, 2005.

    Google Scholar 

  46. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. 103:2480–2487, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26:120, 2007.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, M. S., J. H. Yeon, and J. K. Park. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed. Microdevices 9:25–34, 2007.

    Article  PubMed  CAS  Google Scholar 

  49. Koch, A. E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum. 41:951–962, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell (Cambridge) 84:359–369, 1996.

    CAS  Google Scholar 

  51. Ling, Y., J. Rubin, Y. Deng, C. Huang, U. Demirci, J. M. Karp, and A. Khademhosseini. A cell-laden microfluidic hydrogel. Lab Chip. 7:756–762, 2007.

    Article  PubMed  CAS  Google Scholar 

  52. Lo, C. M., C. R. Keese, and I. Giaever. Monitoring motion of confluent cells in tissue culture. Exp. Cell Res. 204:102–109, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Luo, Y., and M. S. Shoichet. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3:249–253, 2004.

    Article  PubMed  CAS  Google Scholar 

  54. Mace, K. A., S. L. Hansen, C. Myers, D. M. Young, and N. Boudreau. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J. Cell Sci. 118:2567–2577, 2005.

    Article  PubMed  CAS  Google Scholar 

  55. Mack, P. J., Y. Zhang, S. Chung, V. Vickerman, R. D. Kamm, and G. Garcia-Cardena. Biomechanical regulation of endothelial-dependent events critical for adaptive remodeling. J. Biol. Chem. 284:8412–8420, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Mao, H., P. S. Cremer, and M. D. Manson. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. 100:5449–5454, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Martinez-Hernandez, A., and P. S. Amenta. The extracellular matrix in hepatic regeneration. FASEB J. 9:1401–1410, 1995.

    PubMed  CAS  Google Scholar 

  58. Meyvantsson, I., and D. J. Beebe. Cell culture models in microfluidic systems. Ann. Rev. Analyt. Chem. 1:423–449, 2008.

    Article  CAS  Google Scholar 

  59. Moutos, F. T., L. E. Freed, and F. Guilak. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6:162–167, 2007.

    Article  PubMed  CAS  Google Scholar 

  60. Nakanishi, J., T. Takarada, K. Yamaguchi, and M. Maeda. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal. Sci. 24:67–72, 2003.

    Article  Google Scholar 

  61. Nakatsu, M. N., R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Pérez-del-Pulgar, P. M. Carpenter, and C. C. Hughes. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res. 66:102–112, 2003.

    Article  PubMed  CAS  Google Scholar 

  62. Noiri, E., E. Lee, J. Testa, J. Quigley, D. Colflesh, C. R. Keese, I. Giaever, and M. S. Goligorsky. Podokinesis in endothelial cell migration: role of nitric oxide. Am. J. Physiol. Cell Physiol. 274:236–244, 1998.

    Google Scholar 

  63. O’Brien, E. R., M. R. Garvin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, and S. M. Schwartz. Angiogenesis in human coronary atherosclerotic plaques. Am. J. Pathol. 145:883–894, 1994.

    PubMed  Google Scholar 

  64. Paguirigan, A., and D. J. Beebe. Gelatin based microfluidic devices for cell culture. Lab Chip. 6:407–413, 2006.

    Article  PubMed  CAS  Google Scholar 

  65. Paguirigan, A. L., and D. J. Beebe. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. Bioessays 30:811–821, 2008.

    Article  PubMed  CAS  Google Scholar 

  66. Powers, M. J., K. Domansky, M. R. A. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78:257–269, 2002.

    Article  PubMed  CAS  Google Scholar 

  67. Powers, M. J., D. M. Janigian, K. E. Wack, C. S. Baker, D. B. Stolz, and L. G. Griffith. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 8:499–513, 2002.

    Article  PubMed  Google Scholar 

  68. Ren, J., Y. Xiao, L. S. Singh, X. Zhao, Z. Zhao, L. Feng, T. M. Rose, G. D. Prestwich, and Y. Xu. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 66:3006–3014, 2006.

    Article  PubMed  CAS  Google Scholar 

  69. Richert, L., Y. Arntz, P. Schaaf, J. C. Voegel, and C. Picart. pH dependent growth of poly(l-lysine)/poly(l-glutamic) acid multilayer films and their cell adhesion properties. Surf. Sci. 570:13–29, 2004.

    Article  CAS  Google Scholar 

  70. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302:1704, 2003.

    Article  PubMed  CAS  Google Scholar 

  71. Rojas, J. D., S. R. Sennoune, D. Maiti, K. Bakunts, M. Reuveni, S. C. Sanka, G. M. Martinez, E. A. Seftor, C. J. Meininger, G. Wu, D. E. Wesson, M. J. Hendrix, and R. Martínez-Zaguilán. Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 291:H1147–H1157, 2006.

    Article  PubMed  CAS  Google Scholar 

  72. Saadi, W., S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9:627–635, 2007.

    Article  PubMed  Google Scholar 

  73. Sagnella, S. M., F. Kligman, E. H. Anderson, J. E. King, G. Murugesan, R. E. Marchant, and K. Kottke-Marchant. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers. Biomaterials 25:1249–1259, 2004.

    Article  PubMed  CAS  Google Scholar 

  74. Selmeczi, D., S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys. J. 89:912–931, 2005.

    Article  PubMed  CAS  Google Scholar 

  75. Shizukuda, Y., S. Tang, R. Yokota, and J. A. Ware. Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. Circ. Res. 85:247–256, 1999.

    PubMed  CAS  Google Scholar 

  76. Sieuwerts, A. M., J. G. M. Klijn, and J. A. Foekens. Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: influences of the ability of cells to migrate through the filter membrane. Clin. Exp. Metastasis 15:53–62, 1997.

    Article  PubMed  CAS  Google Scholar 

  77. Smith, C. W., R. Rothlein, B. J. Hughes, M. M. Mariscalco, H. E. Rudloff, F. C. Schmalstieg, and D. C. Anderson. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest. 82:1746, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Sudo, R., S. Chung, I. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. Griffith, and R. D. Kamm. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7):2155–2164, 2009.

    Article  PubMed  CAS  Google Scholar 

  79. Sudo, R., T. Mitaka, M. Ikeda, and K. Tanishita. Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. FASEB J. 19:1695–1697, 2005.

    PubMed  CAS  Google Scholar 

  80. Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.

    Article  PubMed  CAS  Google Scholar 

  81. Toh, Y. C., C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 7:302–309, 2007.

    Article  PubMed  CAS  Google Scholar 

  82. Vernon, R. B., and E. H. Sage. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57:118–133, 1999.

    Article  PubMed  CAS  Google Scholar 

  83. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip. 8:1468–1477, 2008.

    Article  PubMed  CAS  Google Scholar 

  84. Walker, G. M., and D. J. Beebe. A passive pumping method for microfluidic devices. Lab Chip. 2:131–134, 2002.

    Article  PubMed  CAS  Google Scholar 

  85. Walker, G. M., J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip. 5:611–618, 2005.

    Article  PubMed  CAS  Google Scholar 

  86. Wang, S. J., W. Saadi, F. Lin, C. Minh-Canh Nguyen, and N. Li Jeon. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300:180–189, 2004.

    Article  PubMed  CAS  Google Scholar 

  87. Waters, C. M., J. Long, I. Gorshkova, Y. Fujiwara, M. Connell, K. E. Belmonte, G. Tigyi, V. Natarajan, S. Pyne, and N. J. Pyne. Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J. 20:509–511, 2006.

    PubMed  CAS  Google Scholar 

  88. Weber, A. J., and M. De Bandt. Angiogenesis: general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine 67:366–383, 2000.

    PubMed  CAS  Google Scholar 

  89. Wenger, A., A. Stahl, H. Weber, G. Finkenzeller, H. G. Augustin, G. B. Stark, and U. Kneser. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10:1536–1547, 2004.

    PubMed  CAS  Google Scholar 

  90. Winter, P. M., A. M. Morawski, S. D. Caruthers, R. W. Fuhrhop, H. Zhang, T. A. Williams, J. S. Allen, R. K. Lacy, J. D. Robertson, G. M. Lanza, and S. A. Wickline. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274, 2003.

    Article  PubMed  CAS  Google Scholar 

  91. Wong, A. P., R. Perez-Castillejos, J. Christopher Love, and G. M. Whitesides. Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29:1853–1861, 2008.

    Article  PubMed  CAS  Google Scholar 

  92. Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610, 2007.

    Article  PubMed  CAS  Google Scholar 

  93. Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.

    Article  PubMed  CAS  Google Scholar 

  94. Yarrow, J., Z. Perlman, N. Westwood, and T. Mitchison. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4:21, 2004.

    Article  PubMed  Google Scholar 

  95. Yilmaz, M., G. Christofori, and F. Lehembre. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 13:535–541, 2007.

    Article  PubMed  CAS  Google Scholar 

  96. Young, B., J. W. Heath, A. Stevens, J. S. Lowe, P. R. Wheater, and H. G. Burkitt. Wheater’s Functional Histology: A Text and Colour Atlas. Edinburg: Churchill Livingstone, 2000.

    Google Scholar 

  97. Zhong, J. F., Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, and L. P. Weiner. A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip. 8:68–74, 2006.

    Article  CAS  Google Scholar 

  98. Zinchenko, Y. S., C. R. Culberson, and R. N. Coger. Contribution of non-parenchymal cells to the performance of micropatterned hepatocytes. Tissue Eng. 12:2241–2251, 2006.

    Article  PubMed  CAS  Google Scholar 

  99. Zinchenko, Y. S., L. W. Schrum, M. Clemens, and R. N. Coger. Hepatocyte and Kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng. 12:751–761, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Draper Laboratories (IR&D Project N. DL-H-550151), the National Science Foundation (EFRI-0735997), the NHLBI (EB003805), and the Singapore-MIT Alliance for Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Kamm.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S., Sudo, R., Vickerman, V. et al. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Ann Biomed Eng 38, 1164–1177 (2010). https://doi.org/10.1007/s10439-010-9899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9899-3

Keywords

Navigation