Skip to main content

Advertisement

Log in

Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The rediscovery of the old-age material graphitic carbon nitride (g-C3N4), a 2D conducting polymer, has given rise to a tide of articles exploring its diverse applications. Recently, owing to its excellent physicochemical stability and tunable electronic structure, the material has proven to be an eminent candidate for improving the sensing quality of electrodes. Excellent properties of g-C3N4 such as exposed surface area, metal-free characteristics, and low-cost synthesis have attracted facile and economical designing of sensors for a variety of analyte molecules. Herein, the readers are introduced to the historical development of g-C3N4 and escorted to the present findings of its electrochemical sensing applications. Along with its sensing utilities, the review shares some exciting insights into the synthesis, structural, and surface chemistry modulations of g-C3N4. A great many approaches for overcoming the inherent limitations have also been critically discussed, starting with the precursor in use. This review article aims to provide a concise perspective and direction to future researchers for enabling them to fabricate smart and eco-friendly sensors using g-C3N4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Liu, J., Wang, H., Antonietti, M.: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 45, 2308–2326 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Lakshmana Reddy, N., Kumbhar, V.S., Lee, K., Shankar, M.V.: Graphitic carbon nitride–based nanocomposite materials for photocatalytic hydrogen generation. In: Nanostructured, Funct. Flex. Mater. Energy Convers. Storage Syst., pp. 293–324 (2020)

  3. Zhu, J., Xiao, P., Li, H., Carabineiro, S.A.C.: Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6, 16449–16465 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Wang, A., Wang, C., Fu, L., Wong-Ng, W., Lan, Y.: Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 1–21 (2017)

    Article  CAS  Google Scholar 

  5. Adekoya, D., Qian, S., Gu, X., Wen, W., Li, D., Ma, J., Zhang, S.: DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 1–44 (2020)

    Google Scholar 

  6. Zou, Y., Yang, B., Liu, Y., Ren, Y., Ma, J., Zhou, X., Cheng, X., Deng, Y.: Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 28, 1806214 (2018)

    Article  CAS  Google Scholar 

  7. Peng, B., Tang, L., Zeng, G., Fang, S., Ouyang, X., Long, B., Zhou, Y., Deng, Y., Liu, Y., Wang, J.: Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect. Biosens. Bioelectron. 121, 19–26 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Gao, D., Xu, Q., Zhang, J., Yang, Z., Si, M., Yan, Z., Xue, D.: Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 6, 2577–2581 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Tong, Z., Yang, D., Li, Z., Nan, Y., Ding, F., Shen, Y., Jiang, Z.: Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11, 1103–1112 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., Fu, H.: Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 1830–1834 (2016)

    Article  CAS  Google Scholar 

  11. Zhang, Y., Zeng, G.-M., Tang, L., Li, Y.-P., Chen, Z.-M., Huang, G.-H.: Quantitative detection of trace mercury in environmental media using a three-dimensional electrochemical sensor with an anionic intercalator. RSC Adv. 4, 18485–18492 (2014)

    Article  CAS  Google Scholar 

  12. Niu, W., Yang, Y.: Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018)

    Article  CAS  Google Scholar 

  13. Ezhil Vilian, A.T., Seo Young, V., Muruganantham, O., Reddicherla, U., Seung-Kyu, H., Cheol Woo, O., Bumjun, P., Yun Suk, H., Young-Kyu, H.: Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. J. Hazard. Mater. 399, 122868 (2020)

    Article  CAS  Google Scholar 

  14. Kalaiyarasi, J., Pandian, K., Ramanathan, S., Gopinath, S.C.B.: Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples. Sci. Rep. 101(10), 1–16 (2020)

    Google Scholar 

  15. Kumar, S., Riyajuddin, S., Singh, K., Yadav, L., Maruyama, T., Ghosh, K.: Strategy to improve the super-capacitive and hydrogen evolution performance of graphitic carbon nitrides via enrichment of carbon content. J. Alloys Compd. 858, 157671 (2021)

    Article  CAS  Google Scholar 

  16. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Riyajuddin, S., Kumar, S., Gaur, S.P., Sud, A., Maruyama, T., Ali, M.E., Ghosh, K.: Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure. Nanotechnology 31, 295501 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R., Aminabhavi, T.M.: Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon N. Y. 149, 693–721 (2019)

    Article  CAS  Google Scholar 

  19. Power, A.C., Morrin, A.: Electroanalytical sensor technology. Electrochemistry, pp. 141–178 (2013). https://doi.org/10.5772/51480

  20. Vinoth, S., Shalini Devi, K.S., Pandikumar, A.: A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. TrAC Trends Anal. Chem. 140, 116274 (2021)

    Article  CAS  Google Scholar 

  21. Ahmad, R., Tripathy, N., Khosla, A., Khan, M., Mishra, P., Ansari, W.A., Syed, M.A., Hahn, Y.-B.: Review—recent advances in nanostructured graphitic carbon nitride as a sensing material for heavy metal ions. J. Electrochem. Soc. 167, 037519 (2019)

    Article  Google Scholar 

  22. Lu, C., Chen, X.: Nanostructure engineering of graphitic carbon nitride for electrochemical applications. ACS Nano. (2021). https://doi.org/10.1021/acsnano.1c06454

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jes, J., Barrio, J., Volokh, M., Shalom, M.: Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A. 8, 11075–11116 (2020)

    Article  Google Scholar 

  24. Luo, Y., Yan, Y., Zheng, S., Xue, H., Pang, H.: Graphitic carbon nitride based materials for electrochemical energy storage. J. Mater. Chem. A. 7, 901–924 (2019)

    Article  CAS  Google Scholar 

  25. Dong, H., Oganov, A.R., Zhu, Q., Qian, G.-R.: The phase diagram and hardness of carbon nitrides. Sci. Reports 5, 1–5 (2015)

    CAS  Google Scholar 

  26. Idris, A.O., Oseghe, E.O., Msagati, T.A.M., Kuvarega, A.T., Feleni, U., Mamba, B.: Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors 20, 5743 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  27. Schwarzer, A., Saplinova, T., Kroke, E.: Tri-s-triazines (s-heptazines)—from a “mystery molecule” to industrially relevant carbon nitride materials. Coord. Chem. Rev. 257, 2032–2062 (2013)

    Article  CAS  Google Scholar 

  28. Magesa, F., Wu, Y., Tian, Y., Vianney, J.M., Buza, J., He, Q., Tan, Y.: Graphene and graphene like 2D graphitic carbon nitride: electrochemical detection of food colorants and toxic substances in environment. Trends Environ. Anal. Chem. 23, e00064 (2019)

    Article  CAS  Google Scholar 

  29. Dong, G., Zhang, Y., Pan, Q., Qiu, J.: A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 20, 33–50 (2014)

    Article  CAS  Google Scholar 

  30. Gnanaprakasa, T.J., Sreenivasan, L., Chandrasekaran, S.: Chapter 5: Graphitic Material-based Disposable Sensors. RSC Detect. Sci. 2021-January, pp. 125–169 (2021)

  31. Chouhan, R.S., Jerman, I., Heath, D., Bohm, S., Gandhi, S., Sadhu, V., Baker, S., Horvat, M.: Emerging tri-s-triazine-based graphitic carbon nitride: a potential signal-transducing nanostructured material for sensor applications. Nano Sel. 2, 712–743 (2021)

    Article  CAS  Google Scholar 

  32. Wang, Y., Zhang, R., Zhang, Z., Cao, J., Ma, T.: Host-guest recognition on 2D graphitic carbon nitride for nanosensing. Adv. Mater. Interfaces. 6, 1901429 (2019)

    Article  CAS  Google Scholar 

  33. Ma, T.Y., Ran, J., Dai, S., Jaroniec, M., Qiao, S.Z.: Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54, 4646–4650 (2015)

    Article  CAS  Google Scholar 

  34. Tian, J., Liu, Q., Asiri, A.M., Alamry, K.A., Sun, X.: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7, 2125–2130 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Duan, J., Chen, S., Jaroniec, M., Qiao, S.Z.: Porous C3N4 Nanolayers@N-Graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Kumar, M.P., Murugesan, P., Vivek, S., Ravichandran, S.: NiWO3 nanoparticles grown on graphitic carbon nitride (g-C3N4) supported toray carbon as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Part. Part. Syst. Charact. 34, 1700043 (2017)

    Article  CAS  Google Scholar 

  37. Zheng, Y., Jiao, Y., Zhu, Y., Cai, Q., Vasileff, A., Li, L.H., Han, Y., Chen, Y., Qiao, S.-Z.: Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Riyajuddin, S., Aziz, S.K.T., Kumar, S., Nessim, G.D., Ghosh, K.: 3D-graphene decorated with g-C3N4/Cu3P composite: a noble metal-free bifunctional electrocatalyst for overall water splitting. ChemCatChem 12, 1394–1402 (2020)

    Article  CAS  Google Scholar 

  39. Zhang, T., Souza, I.P.A.F., Xu, J., Almeida, V.C., Asefa, T.: Mesoporous graphitic carbon nitrides decorated with Cu nanoparticles: efficient photocatalysts for degradation of tartrazine yellow dye. Nanomater. 8, 636 (2018)

    Article  CAS  Google Scholar 

  40. Lee, H.L., Sofer, Z., Mazánek, V., Luxa, J., Chua, C.K., Pumera, M.: Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl. Mater. Today. 8, 150–162 (2017)

    Article  Google Scholar 

  41. Sun, S., Liang, S.: Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9, 10544–10578 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Liao, G., He, F., Li, Q., Zhong, L., Zhao, R., Che, H., Gao, H., Fang, B.: Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 112, 100666 (2020)

    Article  CAS  Google Scholar 

  43. Gangadhar, G., Maheshwari, U., Gupta, S.: Application of nanomaterials for the removal of pollutants from effluent streams. Nanosci. Nanotechnol. Asia. 2, 140–150 (2013)

    Article  Google Scholar 

  44. Kumar, A., Dixit, C.K.: Methods for characterization of nanoparticles. In: Adv. Nanomedicine Deliv. Ther. Nucleic Acids., pp. 44–58 (2017)

  45. Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K.: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. Mahmoudian, M.R., Basirun, W.J., Alias, Y., MengWoi, P.: Investigating the effectiveness of g-C3N4 on Pt/g-C3N4/polythiophene nanocomposites performance as an electrochemical sensor for Hg2+ detection. J. Environ. Chem. Eng. 8, 104204 (2020)

    Article  CAS  Google Scholar 

  47. Rajaji, U., Chinnapaiyan, S., Chen, S.M., Mani, G., Alothman, A.A., Alshgari, R.A.: Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: its application in electrochemical determination of salbutamol (feed additive) in meat samples. J. Hazard. Mater. 413, 125265 (2021)

    Article  CAS  PubMed  Google Scholar 

  48. Nirbhaya, V., Chauhan, D., Jain, R., Chandra, R., Kumar, S.: Nanostructured graphitic carbon nitride based ultrasensing electrochemical biosensor for food toxin detection. Bioelectrochemistry 139, 107738 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. Ganesamurthi, J., Keerthi, M., Chen, S.M., Shanmugam, R.: Electrochemical detection of thiamethoxam in food samples based on CO3O4 Nanoparticle@Graphitic carbon nitride composite. Ecotoxicol. Environ. Saf. 189, 110035 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. Su, S.S., Chang, I.: Review of production routes of nanomaterials. In: Commer. Nanotechnologies—A Case Study Approach., pp. 15–29 (2017)

  51. Vinoth, S., Ramaraj, R., Pandikumar, A.: Facile synthesis of calcium stannate incorporated graphitic carbon nitride nanohybrid materials: a sensitive electrochemical sensor for determining dopamine. Mater. Chem. Phys. 245, 122743 (2020)

    Article  CAS  Google Scholar 

  52. Prasad, C., Tang, H., Bahadur, I.: Graphitic carbon nitride based ternary nanocomposites: from synthesis to their applications in photocatalysis: a recent review. J. Mol. Liq. 281, 634–654 (2019)

    Article  CAS  Google Scholar 

  53. Hao, Q., Jia, G., Wei, W., Vinu, A., Wang, Y., Arandiyan, H., Ni, B.-J.: Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13, 18–37 (2020)

    Article  CAS  Google Scholar 

  54. Balasubramanian, P., Annalakshmi, M., Chen, S.M., Chen, T.W.: Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. Ultrason. Sonochem. 50, 96–104 (2019)

    Article  CAS  PubMed  Google Scholar 

  55. Kesavan, G., Chen, S.M.: Sonochemically exfoliated graphitic-carbon nitride for the electrochemical detection of flutamide in environmental samples. Diam. Relat. Mater. 108, 107975 (2020)

    Article  CAS  Google Scholar 

  56. Vinoth, S., Ssampathkumar, P., Giribabu, K., Pandikumar, A.: Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol. Ultrason. Sonochem. 62, 104855 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, L., Liu, C., Wang, Q., Wang, X., Wang, S.: Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Mikrochim. Acta. 187, 149 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. Ramalingam, M., Ponnusamy, V.K., Sangilimuthu, S.N.: A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Mikrochim. Acta. 186, 69 (2019)

    Article  PubMed  CAS  Google Scholar 

  59. Ray, S.S., Gusain, R., Kumar, N.: Carbon nanomaterial-based adsorbents for water purification : fundamentals and applications, p. 406 (2020)

  60. Hassannezhad, M., Hosseini, M., Ganjali, M.R., Arvand, M.: A graphitic carbon nitride (g-C3N4/Fe3O4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids. Anal. Methods. 11, 2064–2071 (2019)

    Article  CAS  Google Scholar 

  61. Xiao, F., Li, H., Yan, X., Yan, L., Zhang, X., Wang, M., Qian, C., Wang, Y.: Graphitic carbon nitride/graphene oxide(g-C3N4/GO) nanocomposites covalently linked with ferrocene containing dendrimer for ultrasensitive detection of pesticide. Anal. Chim. Acta. 1103, 84–96 (2020)

    Article  CAS  PubMed  Google Scholar 

  62. Kesavan, G., Chen, S.M.: Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine. Microchem. J. 159, 105587 (2020)

    Article  CAS  Google Scholar 

  63. Ijaz, I., Gilani, E., Nazir, A., Bukhari, A.: Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, vol. 13, pp. 59–81 (2020). http://mc.manuscriptcentral.com/tgcl

  64. Rajeev, R., Datta, R., Varghese, A., Sudhakar, Y.N., George, L.: Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem. J. 163, 105910 (2021)

    Article  CAS  Google Scholar 

  65. Sheikhhosseini, E., Ranjbar, M.: Solid-state thermal decomposition method for synthesis and characterization Mg/carbon nanocomposites and investigation of optical investigation. J. Mater. Sci. Mater. Electron. 28, 6201–6207 (2017)

    Article  CAS  Google Scholar 

  66. Mohammad, A., Ahmad, K., Qureshi, A., Tauqeer, M., Mobin, S.M.: Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sens. Actuators B Chem. 277, 467–476 (2018)

    Article  CAS  Google Scholar 

  67. Zou, J., Mao, D., Li, N., Jiang, J.: Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. ApSS. 506, 144672 (2020)

    CAS  Google Scholar 

  68. Qi, H., Sun, B., Dong, J., Cui, L., Feng, T., Ai, S.: Facile synthesis of two-dimensional tailored graphitic carbon nitride with enhanced photoelectrochemical properties through a three-step polycondensation method for photocatalysis and photoelectrochemical immunosensor. Sens. Actuators B Chem. 285, 42–48 (2019)

    Article  CAS  Google Scholar 

  69. Zhang, J., Zhu, Z., Di, J., Long, Y., Li, W., Tu, Y.: A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochim. Acta. 186, 192–200 (2015)

    Article  CAS  Google Scholar 

  70. Nasirpouri, F., Alipour, K., Daneshvar, F., Sanaeian, M.-R.: Electrodeposition of anticorrosion nanocoatings. In: Corros. Prot. Nanoscale., pp. 473–497 (2020)

  71. Paul, S.: Nanomaterials synthesis by electrodeposition techniques for high-energetic electrodes in fuel cell. Nanomater. Energy (2015). https://doi.org/10.1680/nme.14.00031.4,80-89

    Article  Google Scholar 

  72. Saha, S., Das, S.: Nanomaterials in thin-film form for new-generation energy storage device applications. In: Chem. Solut. Synth. Mater. Des. Thin Film Device Appl., pp. 561–583 (2021)

  73. Afraz, A., Rafati, A.A., Hajian, A., Khoshnood, M.: Electrodeposition of Pt nanoparticles on new porous graphitic carbon nanostructures prepared from biomass for fuel cell and methanol sensing applications. Electrocatalysis 6, 220–228 (2015)

    Article  CAS  Google Scholar 

  74. Liu, L., Qi, W., Gao, X., Wang, C., Wang, G.: Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. J. Alloys Compd. 745, 155–163 (2018)

    Article  CAS  Google Scholar 

  75. Darkwah, W.K., Ao, Y.: Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res. Lett. 13, 1–15 (2018)

    Article  CAS  Google Scholar 

  76. Yang, Z., Zhang, Y., Schnepp, Z.: Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A. 3, 14081–14092 (2015)

    Article  CAS  Google Scholar 

  77. Chen, L., Song, J.: Tailored graphitic carbon nitride nanostructures: synthesis, modification, and sensing applications. Adv. Funct. Mater. 27, 1702695 (2017)

    Article  CAS  Google Scholar 

  78. Zheng, Y., Liu, J., Liang, J., Jaroniec, M., Qiao, S.Z.: Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5, 6717–6731 (2012)

    Article  CAS  Google Scholar 

  79. Zhang, Y., Bo, X., Nsabimana, A., Luhana, C., Wang, G., Wang, H., Li, M., Guo, L.: Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron. 53, 250–256 (2014)

    Article  PubMed  CAS  Google Scholar 

  80. Rajaji, U., Selvi, S.V., Chen, S.M., Chinnapaiyan, S., Chen, T.W., Govindasamy, M.: A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2’-deoxyguanosine. Mikrochim. Acta. 187, 459 (2020)

    Article  CAS  PubMed  Google Scholar 

  81. Govindasamy, M., Wang, S.F., Almahri, A., Rajaji, U.: Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason. Sonochem. 72, 105445 (2021)

    Article  CAS  PubMed  Google Scholar 

  82. Liu, L., Wang, M., Wang, C.: In-situ synthesis of graphitic carbon nitride/iron oxide−copper composites and their application in the electrochemical detection of glucose. Electrochim. Acta. 265, 275–283 (2018)

    Article  CAS  Google Scholar 

  83. Jaysiva, G., Manavalan, S., Chen, S.-M., Veerakumar, P., Keerthi, M., Tu, H.-S.: MoN nanorod/sulfur-doped graphitic carbon nitride for electrochemical determination of chloramphenicol. ACS Sustain. Chem. Eng. 8, 11088–11098 (2020)

    Article  CAS  Google Scholar 

  84. Fu, L., Xie, K., Wu, D., Wang, A., Zhang, H., Ji, Z.: Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater. Chem. Phys. 242, 122462 (2020)

    Article  CAS  Google Scholar 

  85. Mohammad, A., Khan, M.E., Cho, M.H.: Sulfur-doped-graphitic-carbon nitride (S-g-C3N4) for low cost electrochemical sensing of hydrazine. J. Alloys Compd. 816, 152522 (2020)

    Article  CAS  Google Scholar 

  86. Medetalibeyoglu, H., Beytur, M., Akyıldırım, O., Atar, N., Yola, M.L.: Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sens. Actuators B Chem. 319, 128195 (2020)

    Article  CAS  Google Scholar 

  87. Kokulnathan, T., Wang, T.-J.: Vanadium carbide-entrapped graphitic carbon nitride nanocomposites: synthesis and electrochemical platforms for accurate detection of furazolidone. ACS Appl. Nano Mater. 3, 2554–2561 (2020)

    Article  CAS  Google Scholar 

  88. Sriram, B., Baby, J.N., Wang, S.F., Govindasamy, M., George, M., Jothiramalingam, R.: Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Microchim. Acta. 187, 654 (2020)

    Article  CAS  Google Scholar 

  89. Vinoth, S., Rajaitha, P.M., Venkadesh, A., Devi, K.S.S., Radhakrishnan, S., Pandikumar, A.: Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose. Nanoscale Adv. 2, 4242–4250 (2020)

    Article  CAS  Google Scholar 

  90. Zhao, Q., Wu, W., Wei, X., Jiang, S., Zhou, T., Li, Q., Lu, Q.: Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol—a determination. Sens. Actuators B Chem. 248, 673–681 (2017)

    Article  CAS  Google Scholar 

  91. Zhou, D., Wang, M., Dong, J., Ai, S.: A novel electrochemical immunosensor based on mesoporous graphitic carbon nitride for detection of subgroup J of avian leukosis viruses. Electrochim. Acta. 205, 95–101 (2016)

    Article  CAS  Google Scholar 

  92. Xu, Y., Lei, W., Su, J., Hu, J., Yu, X., Zhou, T., Yang, Y., Mandler, D., Hao, Q.: A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. Electrochim. Acta. 259, 994–1003 (2018)

    Article  CAS  Google Scholar 

  93. Lu, Q., Deng, J., Hou, Y., Wang, H., Li, H., Zhang, Y.: One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 51, 12251–12253 (2015)

    Article  CAS  Google Scholar 

  94. Keerthi, M., Manavalan, S., Chen, S.-M., Shen, P.-W.: A facile hydrothermal synthesis and electrochemical properties of manganese dioxide@graphitic carbon nitride nanocomposite toward highly sensitive detection of nitrite. J. Electrochem. Soc. 166, B1245 (2019)

    Article  Google Scholar 

  95. Ramalingam, M., Ponnusamy, V.K., Sangilimuthu, S.N.: Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode. Environ. Sci. Pollut. Res. 27, 17481–17491 (2019)

    Article  CAS  Google Scholar 

  96. Zhou, Z., Zhang, Y., Shen, Y., Liu, S., Zhang, Y.: Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 47, 2298–2321 (2018)

    Article  CAS  PubMed  Google Scholar 

  97. Sakthivel, A., Chandrasekaran, A., Jayakumar, S., Manickam, P., Alwarappan, S.: Sulphur doped graphitic carbon nitride as an efficient electrochemical platform for the detection of acetaminophen. J. Electrochem. Soc. 166, B1461–B1469 (2019)

    Article  CAS  Google Scholar 

  98. Ramachandran, R., Chen, T.-W., Chen, S.-M., Baskar, T., Kannan, R., Elumalai, P., Raja, P., Jeyapragasam, T., Dinakaran, K., Gnanakumar, G.: peter: a review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg. Chem. Front. 6, 3418–3439 (2019)

    Article  CAS  Google Scholar 

  99. Luong, J.H.T., Narayan, T., Solanki, S., Malhotra, B.D.: Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J. Funct. Biomater. 11, 71 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  100. Gao, J., Huang, Q., Wu, Y., Lan, Y.-Q., Chen, B.: Metal-organic frameworks for photo/electrocatalysis. Adv. Energy Sustain. Res. 2, 2100033 (2021)

    Article  Google Scholar 

  101. Chen, L., Zeng, X., Si, P., Chen, Y., Chi, Y., Kim, D.-H., Chen, G.: Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal. Chem. 86, 4188–4195 (2014)

    Article  CAS  PubMed  Google Scholar 

  102. Tang, Y., Su, Y., Yang, N., Zhang, L., Lv, Y.: Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem. 86, 4528–4535 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. Liu, J., Huang, J., Zhou, H., Antonietti, M.: Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces. 6, 8434–8440 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. Sun, J., Zhang, J., Zhang, M., Antonietti, M., Fu, X., Wang, X.: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 3, 1–7 (2012)

    Article  Google Scholar 

  105. Zhang, X., Xie, X., Wang, H., Zhang, J., Pan, B., Xie, Y.: Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2012)

    Article  PubMed  CAS  Google Scholar 

  106. Munonde, T.S., Nomngongo, P.N.: Nanocomposites for electrochemical sensors and their applications on the detection of trace metals in environmental water samples. Sensors. 21, 131 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  107. Agnihotri, A.S., Varghese, A., Nidhin, M.: Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)

    Article  Google Scholar 

  108. Verma, A., Kumar, S., Chang, W.-K., Fu, Y.-P.: Bi-functional Ag-CuxO/g-C3N4 hybrid catalysts for the reduction of 4-nitrophenol and the electrochemical detection of dopamine. Dalton Trans. 49, 625–637 (2020)

    Article  CAS  PubMed  Google Scholar 

  109. Elugoke, S.E., Adekunle, A.S., Fayemi, O.E., Mamba, B.B., Sherif, E.S.M., Ebenso, E.E.: Carbon-based quantum dots for electrochemical detection of monoamine neurotransmitters—review. Biosensors 10, 162 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  110. Yola, M.L., Atar, N.: Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine. Compos. Part B Eng. 175, 107113 (2019)

    Article  CAS  Google Scholar 

  111. Veerakumar, P., Rajkumar, C., Chen, S.M., Thirumalraj, B., Lin, K.C.: Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J. Electroanal. Chem. 826, 207–216 (2018)

    Article  CAS  Google Scholar 

  112. Posha, B., Asha, N., Sandhyarani, N.: Carbon nitride quantum dots tethered on CNTs for the electrochemical detection of dopamine and uric acid. New J. Chem. 45, 6263–6272 (2021)

    Article  CAS  Google Scholar 

  113. Mert, S., Bankoğlu, B., Özkan, A., Atar, N., Yola, M.L.: Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J. Mol. Liq. 254, 8–11 (2018)

    Article  CAS  Google Scholar 

  114. Li, X., Wang, S., Meng, Y., Wang, X., Zhang, Y., Hun, X.: Photoelectrochemical determination of ractopamine based on inner filter effect between gold nanoparticles and graphitic carbon nitride-copper(II) polyphthalocyanine coupled with 3D DNA stabilizer. Microchim. Acta. 186, 1–10 (2019)

    CAS  Google Scholar 

  115. Wang, J., Yang, M.: Two-dimensional nanomaterials in cancer theranostics. In: Theranostic Bionanomaterials, pp. 263–288 (2019)

  116. Wu, W., Ali, A., Jamal, R., Abdulla, M., Bakri, T., Abdiryim, T.: A bromine-catalysis-synthesized poly(3,4-ethylenedioxythiophene)/graphitic carbon nitride electrochemical sensor for heavy metal ion determination. RSC Adv. 9, 34691–34698 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bu, L., Xie, Q., Ming, H.: Gold nanoparticles decorated three-dimensional porous graphitic carbon nitrides for sensitive anodic stripping voltammetric analysis of trace arsenic(III). J. Alloys Compd. 823, 153723 (2020)

    Article  CAS  Google Scholar 

  118. Jin, Z., Hongling, Z., Quan, Q., Yanlian, Y., Qingwen, L., Zhongfan, L., Xinyong, G., Du, Z.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B. 107, 3712–3718 (2003)

    Article  CAS  Google Scholar 

  119. Dimitrios, T., Nikos, T., Alberto, B., Maurizio, P.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006)

    Article  CAS  Google Scholar 

  120. Wang, Z.W., Liu, H.J., Li, C.Y., Chen, X., Weerasooriya, R., Wei, J., Lv, J., Lv, P., Wu, Y.C.: Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta 208, 120410 (2020)

    Article  CAS  PubMed  Google Scholar 

  121. Kesavan, G., Vinothkumar, V., Chen, S.M., Thangadurai, T.D.: Construction of metal-free oxygen-doped graphitic carbon nitride as an electrochemical sensing platform for determination of antimicrobial drug metronidazole. Appl. Surf. Sci. 556, 149814 (2021)

    Article  CAS  Google Scholar 

  122. Zou, H., Yan, X., Ren, J., Wu, X., Dai, Y., Sha, D., Pan, J., Liu, J.: Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization. J. Mater. 1, 340–347 (2015)

    Google Scholar 

  123. Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., Wang, H.: Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B Environ. 217, 388–406 (2017)

    Article  CAS  Google Scholar 

  124. Yuan, X., Jiang, L., Liang, J., Pan, Y., Zhang, J., Wang, H., Leng, L., Wu, Z., Guan, R., Zeng, G.: In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation. Chem. Eng. J. 356, 371–381 (2019)

    Article  CAS  Google Scholar 

  125. Mohammad, A., Khan, M.E., Yoon, T., Hwan Cho, M.: Na, O-co-doped-graphitic-carbon nitride (Na, O-g-C3N4) for nonenzymatic electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci. 525, 146353 (2020)

    Article  CAS  Google Scholar 

  126. Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., Zhang, Y.: Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A. 5, 17452–17463 (2017)

    Article  CAS  Google Scholar 

  127. Vinoth, S., Govindasamy, M., Wang, S.-F., Al Othman, Z.A., Alshgari, R.A., Ouladsmane, M.: Fabrication of strontium molybdate incorporated with graphitic carbon nitride composite: high-sensitive amperometric sensing platform of food additive in foodstuffs. Microchem. J. 167, 106307 (2021)

    Article  CAS  Google Scholar 

  128. Chen, X., Sun, X.T., Cui, M.S., Liu, Y., Cui, K.P., Weerasooriya, R.: Electrochemical determination of methylmercury via modulating bandgap of sulfur doped graphitic carbon nitride. J. Environ. Chem. Eng. 9, 105510 (2021)

    Article  CAS  Google Scholar 

  129. Fidan, T., Torabfam, M., Saleem, Q., Wang, C., Kurt, H., Yüce, M., Tang, J., Bayazit, M.K.: Functionalized graphitic carbon nitrides for environmental and sensing applications. Adv. Energy Sustain. Res. 2, 2000073 (2021)

    Article  Google Scholar 

  130. Hu, S., Ma, L., Xie, Y., Li, F., Fan, Z., Wang, F., Wang, Q., Wang, Y., Kang, X., Wu, G.: Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans. 44, 20889–20897 (2015)

    Article  CAS  PubMed  Google Scholar 

  131. Clancy, A.J., Melbourne, J., Shaffer, M.S.P.: A one-step route to solubilised, purified or functionalized single-walled carbon nanotubes. J. Mater. Chem. A. 3, 16708–16715 (2015)

    Article  CAS  Google Scholar 

  132. Oh, J., Yoo, R.J., Kim, S.Y., Lee, Y.J., Kim, D.W., Park, S.: Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes. Chem. A Eur. J. 21, 6241–6246 (2015)

    Article  CAS  Google Scholar 

  133. Zhong, L., Anand, C., Lakhi, K.S., Lawrence, G., Vinu, A.: Bifunctional mesoporous carbon nitride: highly efficient enzyme-like catalyst for one-pot deacetalization-knoevenagel reaction. Sci. Reports. 5, 1–8 (2015)

    Google Scholar 

  134. Djurišić, A.B., He, Y., Ng, A.M.C.: Visible-light photocatalysts: prospects and challenges. APL Mater. 8, 030903 (2020)

    Article  CAS  Google Scholar 

  135. Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  PubMed  Google Scholar 

  136. Kumru, B., Shalom, M., Antonietti, M., Schmidt, B.V.K.J.: Reinforced hydrogels via carbon nitride initiated polymerization. Macromolecules 50, 1862–1869 (2017)

    Article  CAS  Google Scholar 

  137. Fu, X., Feng, J., Tan, X., Lu, Q., Yuan, R., Chen, S.: Electrochemiluminescence sensor for dopamine with a dual molecular recognition strategy based on graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids. RSC Adv. 5, 42698–42704 (2015)

    Article  CAS  Google Scholar 

  138. Lin, L., Ou, H., Zhang, Y., Wang, X.: Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6, 3921–3931 (2016)

    Article  CAS  Google Scholar 

  139. Kalcher, K.: Renaissances and current trends with electrochemical sensors and biosensors. Int. J. Biosens. Bioelectron. 3, 00083 (2017)

    Google Scholar 

  140. Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., Kim, M.: Immobilized enzymes in biosensor applications. Materials (Basel). 12, 121 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  141. Scheller, F., Kirstein, D., Kirstein, L., Schubert, F., Wollenberger, U., Olsson, B., Gorton, L., Johnasson, G.: Enzyme electrodes and their application. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 316, 85–94 (1987)

    Article  CAS  PubMed  Google Scholar 

  142. Tian, K.J., Liu, H., Dong, Y.P., Chu, X.F., Wang, S.B.: Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets. Colloids Surfaces A Physicochem. Eng. Asp. 581, 123808 (2019)

    Article  CAS  Google Scholar 

  143. Sheng, F., Zhang, X., Wang, G.: Novel ultrasensitive homogeneous electrochemical aptasensor based on dsDNA-templated copper nanoparticles for the detection of ractopamine. J. Mater. Chem. B. 5, 53–61 (2017)

    Article  CAS  PubMed  Google Scholar 

  144. Asal, M., Özen, Ö., Şahinler, M., Baysal, H.T., Polatoğlu, İ: An overview of biomolecules, immobilization methods and support materials of biosensors. Sens. Rev. 39, 377–386 (2018)

    Article  Google Scholar 

  145. Rasheed, P.A., Radhakrishnan, T., Nambiar, S.R., Thomas, R.T., Sandhyarani, N.: Graphitic carbon nitride as immobilization platform for ssDNA in a genosensor. Sens. Actuators B Chem. 250, 162–168 (2017)

    Article  CAS  Google Scholar 

  146. Li, M., He, B.: Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sens. Actuators B Chem. 329, 129158 (2021)

    Article  CAS  Google Scholar 

  147. Muhammad, S., Long, X., Salman, M.: COVID-19 pandemic and environmental pollution: a blessing in disguise? Sci. Total Environ. 728, 138820 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. The Global Risks Report 2021, World Economic Forum, pp. 4–97 (2021). ISBN: 978-2-940631-24-7

  149. Ju, K.S., Parales, R.E.: Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 74, 250–272 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou, L., Cao, H., Descorme, C., Xie, Y.: Phenolic compounds removal by wet air oxidation based processes. Front. Environ. Sci. Eng. 12, 1 (2018)

    Article  CAS  Google Scholar 

  151. Asif, M., Ajmal, M., Ashraf, G., Muhammad, N., Aziz, A., Iftikhar, T., Wang, J., Liu, H.: The role of biosensors in coronavirus disease—2019 outbreak. Curr. Opin. Electrochem. 23, 174 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jin, X., Chen, J., Zeng, X., Xu, L.J., Wu, Y., Fu, F.F.: A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens. Bioelectron. 128, 45–51 (2019)

    Article  CAS  PubMed  Google Scholar 

  153. Sakthivel, A., Chandrasekaran, A., Sadasivam, M., Manickam, P., Alwarappan, S.: Sulphur doped graphitic carbon nitride as a dual biosensing platform for the detection of cancer biomarker CA15–3. J. Electrochem. Soc. 168, 017507 (2021)

    Article  CAS  Google Scholar 

  154. Chen, A., Chatterjee, S.: Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013)

    Article  CAS  PubMed  Google Scholar 

  155. Gandomi, F., Marzi Khosrowshahi, E., Sohouli, E., Aghaei, M., Saleh Mohammadnia, M., Naghian, E., Rahimi-Nasrabadi, M.: Linagliptin electrochemical sensor based on carbon nitride-β-cyclodextrin nanocomposite as a modifier. J. Electroanal. Chem. 876, 114697 (2020)

    Article  CAS  Google Scholar 

  156. Umesh, N.M., Antolin Jesila, J., Wang, S.F., Govindasamy, M., Alshgari, R.A., Ouladsmane, M., Asharani, I.V.: Fabrication of highly sensitive anticancer drug sensor based on heterostructured ZnO-Co3O4 capped on carbon nitride nanomaterials. Microchem. J. 167, 106244 (2021)

    Article  CAS  Google Scholar 

  157. Akshaya, K.B., Bhat, V.S., Varghese, A., George, L., Hegde, G.: Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 166(13), B1097 (2019).

    Article  CAS  Google Scholar 

  158. Song, J., Huang, M., Jiang, N., Zheng, S., Mu, T., Meng, L., Liu, Y., Liu, J., Chen, G.: Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. J. Hazard. Mater. 391, 122024 (2020)

    Article  CAS  PubMed  Google Scholar 

  159. Yan, Y., Jamal, R., Yu, Z., Zhang, R., Zhang, W., Ge, Y., Liu, Y., Abdiryim, T.: Composites of thiol-grafted PEDOT with N-doped graphene or graphitic carbon nitride as an electrochemical sensor for the detection of paracetamol. J. Mater. Sci. 55, 5571–5586 (2020)

    Article  CAS  Google Scholar 

  160. Yuan, Y., Zhang, F., Wang, H., Gao, L., Wang, Z.: A sensor based on Au nanoparticles/carbon nitride/graphene composites for the detection of chloramphenicol and ciprofloxacin. ECS J. Solid State Sci. Technol. 7, M201–M208 (2018)

    Article  CAS  Google Scholar 

  161. Shafiq, M., Anjum, S., Hano, C., Anjum, I., Abbasi, B.H.: An overview of the applications of nanomaterials and nanodevices in the food industry. Foods. 9, 148 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  162. Karimi, M.A., Aghaei, V.H., Nezhadali, A., Ajami, N.: Graphitic carbon nitride as a new sensitive material for electrochemical determination of trace amounts of tartrazine in food samples. Food Anal. Methods. 11, 2907–2915 (2018)

    Article  Google Scholar 

  163. Hu, E., Ning, J., He, B., Li, Z., Zheng, C., Zhong, Y., Zhang, Z., Hu, Y.: Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J. Mater. Chem. A. 5, 2271–2279 (2017)

    Article  CAS  Google Scholar 

  164. Rana, A., Killa, M., Yadav, N., Mishra, A., Mathur, A., Kumar, A., Khanuja, M., Narang, J., Pilloton, R.: Graphitic carbon nitride as an amplification platform on an electrochemical paper-based device for the detection of norovirus-specific DNA. Sensors (Switzerland). 20, 2070 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  165. Bilal, S., Mudassir Hassan, M., Fayyaz ur Rehman, M., Nasir, M., Jamil Sami, A., Hayat, A.: An insect acetylcholinesterase biosensor utilizing WO3/g-C3N4 nanocomposite modified pencil graphite electrode for phosmet detection in stored grains. Food Chem. 346, 128894 (2021)

    Article  CAS  PubMed  Google Scholar 

  166. Li, W., Jiang, D., Yan, P., Dong, J., Qian, J., Chen, J., Xu, L.: Graphitic carbon nitride/α-Fe2O3 heterostructures for sensitive photoelectrochemical non-enzymatic glucose sensor. Inorg. Chem. Commun. 106, 211–216 (2019)

    Article  CAS  Google Scholar 

  167. Mohammad, A., Khan, M.E., Karim, M.R., Cho, M.H., Yoon, T.: Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications. Ceram. Int. 47, 23578–23589 (2021)

    Article  CAS  Google Scholar 

  168. Vinoth, S., Mary Rajaitha, P., Pandikumar, A.: In-situ pyrolytic processed zinc stannate incorporated graphitic carbon nitride nanocomposite for selective and sensitive electrochemical determination of nitrobenzene. Compos. Sci. Technol. 195, 108192 (2020)

    Article  CAS  Google Scholar 

  169. Karthik, P., Gowthaman, P., Venkatachalam, M., Saroja, M.: Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorg. Chem. Commun. 119, 108060 (2020)

    Article  CAS  Google Scholar 

  170. Jin, X., Feng, C., Ponnamma, D., Yi, Z., Parameswaranpillai, J., Thomas, S., Salim, N.V.: Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. Chem. Eng. J. Adv. 4, 100034 (2020)

    Article  CAS  Google Scholar 

  171. Li, S., Ma, L., Zhou, M., Li, Y., Xia, Y., Fan, X., Cheng, C., Luo, H.: New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng. 13, 32–41 (2020)

    Article  Google Scholar 

  172. Angelov, G.V., Nikolakov, D.P., Ruskova, I.N., Gieva, E.E., Spasova, M.L.: Healthcare Sensing and Monitoring. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), LNCS, vol. 11369, pp. 226–262 (2019)

  173. Pyo, S., Lee, J., Bae, K., Sim, S., Kim, J.: Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 2005902 (2021). https://doi.org/10.1002/adma.202005902

  174. Song, Y., Qiao, J., Li, W., Ma, C., Chen, S., Li, H., Hong, C.: Bimetallic PtCu nanoparticles supported on molybdenum disulfide–functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Microchim. Acta. 187, 538 (2020)

    Article  CAS  Google Scholar 

  175. John, A., Benny, L., Cherian, A.R., Narahari, S.Y., Varghese, A., Hegde, G.: Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J. Nanostructure Chem. 111(11), 1–31 (2021)

    Article  CAS  Google Scholar 

  176. Yang, X., Cheng, H.: Recent developments of flexible and stretchable electrochemical biosensors. Micromachines. 11, 243 (2020)

    Article  PubMed Central  Google Scholar 

  177. Jia, X., Dong, S., Wang, E.: Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosens. Bioelectron. 76, 80–90 (2016)

    Article  CAS  PubMed  Google Scholar 

  178. Dang, X., Zhao, H., Wang, X., Sailijiang, T., Chen, S., Quan, X.: Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim. Acta. 185, 1–8 (2018)

    Article  CAS  Google Scholar 

  179. Pang, X., Cui, C., Su, M., Wang, Y., Wei, Q., Tan, W.: Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy 46, 101–109 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fethi, A.: Novel materials for electrochemical sensing platforms. Sensors Int. 1, 100035 (2020)

    Article  Google Scholar 

  181. Pandikumar, A., Rameshkumar, P.: Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals. Elsevier Book Metal Oxide Series. (2021). https://doi.org/10.1016/C2019-0-02503-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anitha Varghese or Gurumurthy Hegde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, A.M., Rajeev, R., Thadathil, D.A. et al. Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. J Nanostruct Chem 12, 765–807 (2022). https://doi.org/10.1007/s40097-021-00459-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00459-w

Keywords

Navigation