Skip to main content

Advertisement

Log in

Graphitic Carbon Nitride as a New Sensitive Material for Electrochemical Determination of Trace Amounts of Tartrazine in Food Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this work, g-C3N4 was successfully fabricated by direct pyrolysis of the melamine, and then without any modification, was used to prepare g-C3N4/graphite pencil electrode. The maximum current at this working electrode was depended significantly by the pH value; thus, the g-C3N4/tartrazine interaction is pH-dependent and the best pH was obtained in an acidic medium at pH 2.1. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of tartrazine. Differential pulse voltammetry under the optimized experimental conditions showed that the electrochemical current of the sensor was linear to the concentration of tartrazine in dynamic range of 1.0 × 10−7 to 1.0 × 10−5 mol L−1. The detection limit of tartrazine was found to be 0.21 μmol L−1. In addition, this method is simple, environmental friendly, and economical for rapid and precision determination of trace amounts of tartrazine in real samples. This electrode has a good stability and repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad HS, Kamarudin K, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610

    Article  CAS  Google Scholar 

  • Al-Degs YS (2009) Determination of three dyes in commercial soft drinks using HLA/GO and liquid chromatography. Food Chem 117:485–490

    Article  CAS  Google Scholar 

  • Amiri M, Salehniya H, Habibi-Yangjeh A (2016) Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind Eng Chem Res 55:8114–8122

    Article  CAS  Google Scholar 

  • Ansari SA, Cho MH (2017) Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci Rep 7:43055

    Article  PubMed  PubMed Central  Google Scholar 

  • Arvand M, Parhizi Y, Mirfathi SH (2016) Simultaneous voltammetric determination of synthetic colorants in foods using a magnetic core–shell Fe3O4@SiO2/MWCNTs nanocomposite modified carbon paste electrode. Food Anal Methods 9:863–875

    Article  Google Scholar 

  • Arvand M, Ashoori Gaskarmahalleh A, Hemmati S (2017) Enhanced-oxidation and highly sensitive detection of Tartrazine in foodstuffs via new platform based on poly (5-sulfosalicylic acid) /Cu(OH)2 nanoparticles. Food Anal Methods 10:2241–2251

    Article  Google Scholar 

  • Cai Z, Rong M, Zhao T, Zhao L, Wang Y, Chen X (2015) Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J Electroanal Chem 759:32–37

    Article  CAS  Google Scholar 

  • Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  PubMed  Google Scholar 

  • Capitfin-Vallvey LF, Iglesias NN, Paya IO, Castaneda RA (1997) Simultaneous determination of Tartrazine and sunset yellow in cosmetic products by first-derivative spectrophotometry. Microchim Acta 126:153–157

    Article  Google Scholar 

  • Chao M, Ma X (2015) Convenient electrochemical determination of sunset yellow and Tartrazine in food samples using a poly (L-phenylalanine)-modified glassy carbon electrode. Food Anal Methods 8:130–138

    Article  Google Scholar 

  • Cheng N, Jiang P, Liu Q, Tian J, Asiri AM, Sun X (2014) Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139:5065–5068

    Article  CAS  PubMed  Google Scholar 

  • Gan T, Sun J, Meng W, Song L, Zhang Y (2013a) Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chem 141:3731–3737

    Article  CAS  PubMed  Google Scholar 

  • Gan T, Sun J, Wu Q, Jing Q, Yu S (2013b) Graphene decorated with nickel nanoparticles as a sensitive substrate for simultaneous determination of sunset yellow and tartrazine in food samples. Electroanalysis 25:1505–1512

    Article  CAS  Google Scholar 

  • Gao X, Liu X, Zhu Z, Gao Y, Wang Q, Zhu F, Xie Z (2017) Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks. Sci Rep 7:973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoreishi SM, Behpour M, Golestaneh M (2013) Selective voltammetric determination of tartrazine in the presence of red 10B by nanogold-modified carbon paste electrode. J Chin Chem Soc 60:120–126

    Article  CAS  Google Scholar 

  • Gu H, Zhou T, Shi G (2015) Synthesis of graphene supported graphene-likeC3N4 metal-free layered nanosheets for enhanced electrochemical performance and their biosensing for biomolecules. Talanta 132:871–876

    Article  CAS  PubMed  Google Scholar 

  • Guan W, Long Z, Liu J, Hua Y, Ma Y, Zhang H (2015) Unique graphitic carbon nitride nanovessels as recyclable adsorbent for solid phase extraction of benzoylurea pesticides in juices samples. Food Anal Methods 8:2202–2210

    Article  Google Scholar 

  • Hatamie A, Marahel F, Sharifat A (2018) Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta 176:518–525

    Article  CAS  Google Scholar 

  • Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W (2015) In-situ synthesis of direct solid-state Z-scheme, V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B-Environ 180:663–673

    Article  CAS  Google Scholar 

  • Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2014) N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8:157–164

    Article  CAS  Google Scholar 

  • Hurst WJ, Mckim JM, Martin RA (1981) Determination of tartrazine in food products by HPLC. J Food Sci 46:419–424

    Article  CAS  Google Scholar 

  • Jiang X, Li J, Fang J, Gao L, Cai W, Li X, Xu A, Ruan X (2017) The photocatalytic performance of g-C3N4 from melamine hydrochloride for dyes degradation with peroxymonosulfate. J Photochem Photobiol A Chem 336:54–62

    Article  CAS  Google Scholar 

  • Lee HL, Sofer Z, Mazanek V, Luxa J, Chua CK, Pumera M (2016) Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl Mater Today 8:150–162

    Article  Google Scholar 

  • Li Q, He Y, Peng R (2015) TeO2 nanoparticle loaded graphitic carbon nitride hybrids: their preparation and catalytic activities in the thermal decomposition of ammonium perchlorate. Eur J Inorg Chem 34:4062–4067

    Article  CAS  Google Scholar 

  • Liu Y, Wang Q, Lei J, Hao Q, Wang W, Ju H (2014) Anodic electrochemiluminescence of graphitic-phase C3N4 Nanosheets for sensitive biosensing. Talanta 122:130–134

    Article  CAS  PubMed  Google Scholar 

  • Liu L, LV H, Wang C, AO Z, Wang G (2016a) Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochim Acta 206:259–269

    Article  CAS  Google Scholar 

  • Liu J, Wang H, Antonietti M (2016b) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem Soc Rev 45:2308–2326

    Article  CAS  PubMed  Google Scholar 

  • Lu’ısa M, Silva S, Beatriz M, Garcia Q, LFC L, Lima E (2007) Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system. Talanta 72:282–288

    Article  CAS  Google Scholar 

  • Ma H, Wang Y, Zhang H, Wu D, Guo A, Yan T, Wei Q, Du B (2015) A sensitive electrochemical immunesensor for the detection of squamous cell carcinoma antigen by using PtAu nanoparticles loaded on TiO2 colloidal spheres as labels. RSC Adv 5:59853–59860

    Article  CAS  Google Scholar 

  • Majidi MR, Fadakar Bajeh Baj R, Naseri A (2013) Carbon nanotube–ionic liquid (CNT–IL) nanocamposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of sunset yellow and tartrazine in food samples. Food Anal Methods 6:1388–1397

    Article  Google Scholar 

  • Mansor N, Miller TS, Dedigama I, BelenJorge A, Jia J, Brázdová V, Mattevi C, Gibbs C, Hodgson D, Shearing PR, Howardg A, Coràb F, Daniel MS, Bretta JL, McMill F (2016) Graphitic carbon nitride as a catalyst support in fuel cells and electrolyzers. Electrochim Acta 222:44–57

    Article  CAS  Google Scholar 

  • Medeiros RA, Lourenceao BC, Rocha-Filho RC, Fatibello-Filho O (2012) Flow injection simultaneous determination of synthetic colorants in food using multiple pulse amperometric detection with a boron-doped diamond electrode. Talanta 99:883–889

    Article  CAS  PubMed  Google Scholar 

  • Medeiros RA, Matos R, Benchikh A, Saidani B, Debiemme-Chouvy C, Deslouis C, Rocha-Filho RC (2013) Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid. Anal Chim Acta 797:30–39

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Lu L, Leng J, Yu Y, Wang W, Jiang M, Bai L (2016) An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of sunset yellow and tartrazine. Food Chem 190:889–895

    Article  CAS  PubMed  Google Scholar 

  • Rodrguez JA, Jurez MG, Galn-Vidal CA, Miranda JM, Barrado E (2015) Determination of allura red and tartrazine in food samples by sequential injection analysis combined with voltammetric detection at antimony film electrode. Electroanalysis 27:2329–2334

    Article  CAS  Google Scholar 

  • Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217

    Article  CAS  PubMed  Google Scholar 

  • Sadhukhan M, Barman S (2013) Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions. J Mater Chem A 1:2752–2756

    Article  CAS  Google Scholar 

  • Sano T, Tsutsui S, Koike K, Hirakawa T, Teramoto Y, Negishi N, Takeuchi K (2013) Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J Mater Chem A 1:6489–6496

    Article  CAS  Google Scholar 

  • Sierra-Rosalesa P, Toledo-Neirab C, Squellaa JA (2017) Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sens Actuat B Chem 240:1257–1264

    Article  CAS  Google Scholar 

  • Silva AM, Rojas MI (2016) Electric and structural properties of polymeric graphite carbon nitride (g-C3N4): a density functional theory study. Comput Theor Chem 1098:41–49

    Article  CAS  Google Scholar 

  • Songa YZ, Xua JM, Lva JS, Zhonga H, Yeb Y, Xiec JM (2012) Electrochemical reduction of tartrazine at multi-walled carbon nanotube-modified pyrolytic graphite electrode. Russ J Phys Chem A 86:303–310

    Article  CAS  Google Scholar 

  • Taner Bişgin A, Uçan M, Narin I, Soylak M (2015) A comparative study for separation, preconcentration and determination of tartrazine (E 102) in soft drink samples by two kinds of amberlite resins. Food Anal Methods 8:2141–2149

    Article  Google Scholar 

  • Tao Y, Ni Q, Wei M, Xia D, Li X, Xu A (2015) Metal-free activation of peroxymonosulfate by g- C3N4 under visible light irradiation for the degradation of organic dyes. RSC Adv 5:44128–44136

    Article  CAS  Google Scholar 

  • Tian J, Liu Q, Ge C, Xing Z, Asiri AM, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nano 5:8921–8924

    CAS  Google Scholar 

  • Vadivel S, Maruthamani D, Habibi-Yangjeh A, Paul B, Sankar Dhar S, Selvam K (2016) Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation. J Colloid Interface Sci 480:126–136

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Bi W (2015) Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta 132:922–928

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhao J (2015) Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of sunset yellow and tartrazine in drinks. Sens Actuat B Chem 216:578–585

    Article  CAS  Google Scholar 

  • Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  CAS  Google Scholar 

  • Xiong T, Cen W, Zhang Y, Dong F (2016) Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal 6:2462–2472

    Article  CAS  Google Scholar 

  • Xu J, Li Y, Peng S, Lu G, Li S (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15:7657–7665

    Article  CAS  PubMed  Google Scholar 

  • Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Wang R, Wu M, Yuan Y (2015) A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci 358:15–27

    Article  CAS  Google Scholar 

  • Yew YT, Lim CS, Eng AYS, Oh J, Park S, Pumera M (2016) Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: searching for catalytic effects. ChemPhysChem 17:481–488

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zheng H, Shi M, Jing S, Qu L (2016) A novel electrochemical sensor based on poly (diallyldimethylammoniumchloride)-dispersed graphene supported palladium nanoparticles for simultaneous determination of sunset yellow and tartrazine in soft drinks. Food Anal Methods 10:200–209

    Article  Google Scholar 

  • Zhang H, Huang Q, Huang Y, Li F, Zhang W, Wei C, Chen J, Dai P, Huang L, Huang Z, Kang L, Hu S, Hao A (2014) Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 142:125–131

    Article  CAS  Google Scholar 

  • Zhao L, Zeng B, Zhao F (2014) Electrochemical determination of tartrazine using a molecularly imprinted polymer–multiwalled carbon nanotubes-ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochim Acta 146:611–617

    Article  CAS  Google Scholar 

  • Zhao Q, Wu W, Wei X, Jiang S, Zhou T, Li Q, Lu Q (2017) Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination. Sens Actuat B Chem 248:673–681

    Article  CAS  Google Scholar 

  • Zhu J, Xiao P, Li H, Carabineiro SAC (2014) Graphitic carbon nitride: synthesis, properties and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In this paper, we are grateful of the Payame Noor University for providing laboratory facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Karimi.

Ethics declarations

Conflict of Interest

M.A. Karimi declares that he has no conflict of interest. V. Haji Aghaei declares that he she has no conflict of interest. A. Nezhadali declares that he has no conflict of interest. N. Ajami declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M.A., Aghaei, V.H., Nezhadali, A. et al. Graphitic Carbon Nitride as a New Sensitive Material for Electrochemical Determination of Trace Amounts of Tartrazine in Food Samples. Food Anal. Methods 11, 2907–2915 (2018). https://doi.org/10.1007/s12161-018-1264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1264-4

Keywords

Navigation