Skip to main content

Advertisement

Log in

Endophytic bacteria mitigate mercury toxicity to host plants

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Plant communities growing in metal-contaminated areas can develop resistance mechanisms by establishing symbiotic associations with endophytic microorganisms. The functionality and diversity of endophytic communities depend on the amount and type of metal present in the soil. To characterise the response of endophytic bacterial communities to mercury-induced abiotic stress, we analysed the colonization frequency and number of bacterial isolates in the roots of Aeschynomene fluminensis (Joint Vetch) and Polygonum acuminatum (Smartweed), which represent the families Fabaceae and Polygonaceae, respectively. These two plant species are found in many mercury-contaminated areas. The isolates were characterised by morpho- and genotyping and identified by 16S rDNA gene sequencing. The bacteria belonged to the phyla Actinobacteria, Bacteriodetes, Firmicutes, and Proteobacteria. The Hill series and Venn diagram provided evidence that mercury affects the composition, diversity, and richness of the endophytic bacterial communities. Inoculation with Bacillus_sp_BacI34, Burkholderia_sp_BacI45, Enterobacter_sp_BacI14, Enterobacter_sp_BacI26, Enterobacter_sp_BacI18, Klebsiella_pneumoniae_BacI20, Lysobacter_soli_BacI39, Pantoea_sp_BacI16, and Pantoea_sp_BacI23 promoted the growth of corn (Zea mays) plants in mercury-supplemented substrata. It is noteworthy that Pantoea sp_BacI23 increased the host plant length (root and shoot) by 117.09 ± 0.28%. Endophytic bacterial strains may well provide important inoculants for plant growth promotion on metal-contaminated sites and in metal bioremediation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 409,062/2018–9) and Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT, grant 568,258/2014) to Marcos Antônio Soares, Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antônio Soares.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, I.S., Pietro-Souza, W., Barros, B.M. et al. Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis 79, 251–262 (2019). https://doi.org/10.1007/s13199-019-00644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00644-0

Keywords

Navigation