Skip to main content

Advertisement

Log in

Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Bacillus strains are extensively studied for their beneficial role in plant growth and biological control of tomato bacterial wilt (TBW), however their underlying mechanisms remained unexplored. In this study, four rhizobacterial strains, Bacillus amyloliquefaciens D29, B. amyloliquefaciens Am1, B. subtilis D16 and B. methylotrophicus H8 were investigated for their antibacterial activity against (TBW) pathogen and their ability to stimulate Tomato growth. Results revealed that all four strains were able to form robust biofilm, produce Indole acetic acid (IAA) and siderophores, while only D29, Am1 and H8 have capability to solubilize phosphate. The culture filtrate of each strain significantly suppressed the growth and biofilm of Ralstonia solanacearum, where, the cell wall was severely disrupted, which resulted into cell lysis and subsequent leakage of intracellular cytosolic contents. PCR analysis revealed that all four strains are harboring the antimicrobial associated genes for biosynthesis of Bacyllomicin, Fengycin, Iturin, Surfactin and Bacylisin. Subsequent real-time qPCR analysis revealed that the expression of ituC and srfAA genes in Am1 and D16 was remarkably up-regulated during in vitro interaction with R. solanacearum. This suggest that the potential antibacterial and anti-biofilm related mechanisms are associated to their ability to secret the corresponding lipopeptides in surrounding niche. In greenhouse, a positive correlation (0.777 and 0.686) was noted between the IAA amount produced by Bacillus strains and fresh/dry weight of bacterized tomato plants. This the first report demonstrated the mode of antibacterial effect of Bacillus strains against R. solanacearum, moreover this study will help in understanding the mode of action of Bacillus strains during biological management of TBW and promoting the growth of tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Algam S, Xie G, Li B, Yu S, Su T, Larsen J (2010) Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. J Plant Pathol 92:593–600

    CAS  Google Scholar 

  • Almoneafy AA, Xie G, Tian W, Xu L, Zhang G, Ibrahim M (2012) Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr J Biotechnol 11:7193–7201

    Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beneduzi A, Peres D, da Costa PB, Bodanese Zanettini MH, Passaglia LMP (2008a) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250

    Article  PubMed  CAS  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008b) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Berić T, Kojić M, Stanković S, Topisirović L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol Biotechnol 50:25–31

    Google Scholar 

  • Bowen G, Rovira A (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Mol Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dong Y-H, Gusti AR, Zhang Q, Xu J-L, Zhang L-H (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Helander I, Nurmiaho-Lassila E-L, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    Article  PubMed  CAS  Google Scholar 

  • Idris EE, Bochow H, Ross H, Borriuss R (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus. J Plant Dis Prot 111:583–597

    CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen B, Zidack N, Larson B (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathol 94:1272–1275

    Article  CAS  Google Scholar 

  • Jorquera M, Martínez O, Maruyama F, Marschner P, de la Luz MM (2007) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    Article  Google Scholar 

  • Kakar KU, Duan Y-P, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, Elshakh A, Li B, Xie G-L (2013) A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur J Plant Pathol 137:1–16

    Article  Google Scholar 

  • Kakar KU, Nawaz Z, Cui Z, Almoneafy AA, Zhu B, Xie G-L (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol 30:469–478

    Article  PubMed  CAS  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathol 44:693–695

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  PubMed  CAS  Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Li B, Xu L, Lou M, Li F, Zhang Y, Xie G (2008) Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima. Lett Appl Microbiol 46:450–455

    Article  PubMed  CAS  Google Scholar 

  • Li B, Su T, Yu R, Tao Z, Wu Z, Algam SA, Xie G, Wang Y, Sun G (2010) Inhibitory activity of Paenibacillus macerans and Paenibacillus polymyxa against Ralstonia solanacearum. Afr J Microbiol Res 4:2048–2054

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 − ΔΔCT Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol:1B. 1.1-1B. 1.18

  • Mora I, Cabrefiga J, Montesinos E (2012) Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol 14:213–223

    Google Scholar 

  • Nijland R, Hall MJ, Burgess JG (2010) Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Paul N, Sundara Rao WVB (1971) Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant Soil 35:127–132

    Article  Google Scholar 

  • Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    PubMed  CAS  Google Scholar 

  • Ramírez CA, Kloepper JW (2010) Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils 46:835–844

    Article  Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    Article  CAS  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Research, Nucleic Acids

    Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wang S, Wu H, Zhan J, Xia Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56:113–121

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79:808–815

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xue Q-Y, Chen Y, Li S-M, Chen L-F, Ding G-C, Guo D-W, Guo J-H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258

    Article  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth‐promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  PubMed  CAS  Google Scholar 

  • Yin X-T, Xu L, Fan S-S, Xu L-N, Li D-C, Liu Z-Y (2010) Isolation and characterization of an AHL lactonase gene from Bacillus amyloliquefaciens. World J Microbiol Biotechnol 26:1361–1367

    Article  CAS  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathol 91:181–187

    Article  CAS  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by the Special Fund for Agro-scientific Research in the Public Interest (201303015, 201003029) and Zhejiang Provincial Natural Science Foundation of China (LY12C14007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Lin Xie.

Additional information

Abdulwareth A. Almoneafy and Kaleem Ullah Kakar contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almoneafy, A.A., Kakar, K.U., Nawaz, Z. et al. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum . Symbiosis 63, 59–70 (2014). https://doi.org/10.1007/s13199-014-0288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0288-9

Keywords

Navigation