Skip to main content
Log in

Borophene gas sensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-performance gas sensing devices have been extensively studied in industrial production, clinical medicine and environmental monitoring. Among the materials used to fabricate gas sensors, two-dimensional (2D) materials are viewed as favorable candidate sensing materials because of their high surface-to-volume ratios, abundant surface activity, defect sites. However, gas sensors based on the previously reported 2D materials have some disadvantages such as poor air-stability and slow dynamic response. Recently, borophene, as a unique 2D material, has been theoretically predicted to have excellent gas sensing characteristic, especially for nitrogen dioxide (NO2). However, the gas sensing property of borophene has not been still reported experimentally. Here, we report that a chemiresistive sensor device based on borophene shows high sensitivity, fast response, high selectivity, good flexibility and long-time stability. It is found that the sensor has a low experimental detection limit of around 200 ppb, a large detection range from 200 ppb to 100 ppm, and fast response time of 30 s and recovery time of 200 s at room temperature, which are remarkably superior to those of reported 2D materials. The underlying NO2 sensing mechanism of borophene is revealed by first-principles calculations. In line with theoretical predication, it has also been confirmed experimentally that the borophene-based sensor has a unique selectivity to NO2 compared with other common gases. Furthermore, the sensor also displays superior flexibility and stability under different bending angles. This study shows excellent electronic and sensing characteristic of borophene, which indicates that it has great potential application value in high-performance sensing and detection in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

    Article  Google Scholar 

  2. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    Article  CAS  Google Scholar 

  3. Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358.

    Article  CAS  Google Scholar 

  4. Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

    Article  Google Scholar 

  5. Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

    Article  CAS  Google Scholar 

  6. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

    Article  CAS  Google Scholar 

  7. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    Article  CAS  Google Scholar 

  8. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

    Article  CAS  Google Scholar 

  9. Liu, L. R.; Zhang, Z. H.; Liu, X. L.; Xuan, X. Y.; Yakobson, B. I.; Hersam, M. C.; Guo, W. L. Borophene concentric superlattices via self-assembly of twin boundaries. Nano Lett. 2020, 20, 1315–1321.

    Article  CAS  Google Scholar 

  10. Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.

    Article  Google Scholar 

  11. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Polyphony in B flat. Nat. Chem. 2016, 8, 525–527.

    Article  CAS  Google Scholar 

  12. Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.

    Article  CAS  Google Scholar 

  13. Hou, C.; Tai, G. A.; Wu, Z. H.; Hao, J. Q. Borophene: Current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196.

    Article  CAS  Google Scholar 

  14. Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

    Article  CAS  Google Scholar 

  15. Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

    Article  CAS  Google Scholar 

  16. Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

    Article  CAS  Google Scholar 

  17. Wu, Z. H.; Tai, G. A.; Shao, W.; Wang, R.; Hou, C. Experimental realization of quasicubic boron sheets. Nanoscale 2020, 12, 3787–3794.

    Article  CAS  Google Scholar 

  18. Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

    Article  CAS  Google Scholar 

  19. Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

    Article  CAS  Google Scholar 

  20. Zhang, J. J.; Altalhi, T.; Yang, J. H.; Yakobson, B. I. Semiconducting α′-boron sheet with high mobility and low all-boron contact resistance: A first-principles study. Nanoscale 2021, 13, 8474–8480.

    Article  CAS  Google Scholar 

  21. Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

    Article  CAS  Google Scholar 

  22. Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Wu, Z. H.; Liang, X. C. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J. Mater. Chem. A 2021, 9, 13100–13108.

    Article  CAS  Google Scholar 

  23. Huang, C. S.; Murat, A.; Babar, V.; Montes, E. Schwingenschlögl, U. Adsorption of the gas molecules NH3, NO, NO2, and CO on borophene. J. Phys. Chem. C 2018, 122, 14665–14670.

    Article  CAS  Google Scholar 

  24. Shukla, V.; Wärnå, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 2017, 121, 26869–26876.

    Article  CAS  Google Scholar 

  25. Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120.

    Article  Google Scholar 

  26. Liu, H. W.; Hu, K.; Yan, D. F.; Chen, R.; Zou, Y. Q.; Liu, H. B.; Wang, S. Y. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 2018, 30, 1800295.

    Article  Google Scholar 

  27. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    Article  CAS  Google Scholar 

  28. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

    Article  CAS  Google Scholar 

  29. Chatterjee, S. G.; Chatterjee, S.; Ray, A. K.; Chakraborty, A. K. Graphene-metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B:Chem. 2015, 221, 1170–1181.

    Article  Google Scholar 

  30. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  CAS  Google Scholar 

  31. Xie, X. Z.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R. T.; Pasveer, F.; Philips, W. A review of urban air pollution monitoring and exposure assessment methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389.

    Article  Google Scholar 

  32. Trasviña-Moreno, C. A.; Blasco, R.; Marco, Á.; Casas, R. Trasviña-Castro, A. Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring. Sensors 2017, 17, 460.

    Article  Google Scholar 

  33. Asher, E.; Hills, A. J.; Hornbrook, R. S.; Shertz, S.; Gabbard, S.; Stephens, B. B.; Helmig, D.; Apel, E. C. Unpiloted aircraft system instrument for the rapid collection of whole air samples and measurements for environmental monitoring and air quality studies. Environ. Sci. Technol. 2021, 55, 5657–5667.

    Article  CAS  Google Scholar 

  34. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  CAS  Google Scholar 

  35. Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

    Article  CAS  Google Scholar 

  36. Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S. High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 2013, 25, 6699–6702.

    Article  CAS  Google Scholar 

  37. Cui, S. M.; Pu, H. H.; Wells, S. A.; Wen, Z. H.; Mao, S.; Chang, J. B.; Hersam, M. C.; Chen, J. H. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632.

    Article  CAS  Google Scholar 

  38. Abbas, A. N.; Liu, B. L.; Chen, L.; Ma, Y. Q.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. W. Black phosphorus gas sensors. ACS Nano 2015, 9, 5618–5624.

    Article  CAS  Google Scholar 

  39. Zhang, D. Z.; Wu, Z. L.; Zong, X. Q. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B:Chem. 2019, 289, 32–41.

    Article  CAS  Google Scholar 

  40. Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

    Article  Google Scholar 

  41. Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

    Article  CAS  Google Scholar 

  42. Song, W. D.; Chen, J. X.; Li, Z. L.; Fang, X. S. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 2021, 33, 2101059.

    Article  CAS  Google Scholar 

  43. Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.

    Article  CAS  Google Scholar 

  44. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

    Article  CAS  Google Scholar 

  45. Li, J.; Lu, Y. J.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003, 3, 929–933.

    Article  CAS  Google Scholar 

  46. Chung, M. G.; Kim, D. H.; Lee, H. M.; Kim, T.; Choi, J. H.; Seo, D. K.; Yoo, J. B.; Hong, S. H.; Kang, T. J.; Kim, Y. H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators. B:Chem. 2012, 166–167, 172–176.

    Article  Google Scholar 

  47. Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

    Article  CAS  Google Scholar 

  48. Cui, H. P.; Zheng, K.; Xie, Z. J.; Yu, J. B.; Zhu, X. Y.; Ren, H.; Wang, Z. P.; Zhang, F.; Li, X. D.; Tao, L. Q. et al. Tellurene nanoflake-based NO2 sensors with superior sensitivity and a sub-parts-per-billion detection limit. ACS Appl. Mater. Interfaces 2020, 12, 47704–47713.

    Article  CAS  Google Scholar 

  49. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314.

    Article  CAS  Google Scholar 

  50. Wu, E. X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X. D.; Liu, J.; Zhang, D. H. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 1719–1726.

  51. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

    Article  CAS  Google Scholar 

  52. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    Article  CAS  Google Scholar 

  53. Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z. R.; Shi, T. L.; Zettl, A.; Carraro, C.; Worsley, M. A.; Maboudian, R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158–5165.

    Article  CAS  Google Scholar 

  54. Cho, B.; Yoon, J.; Hahm, M. G.; Kim, D. H.; Kim, A. R.; Kahng, Y. H.; Park, S. W.; Lee, Y. J.; Park, S. G.; Kwon, J. D. et al. Graphene-based gas sensor: Metal decoration effect and application to a flexible device. J. Mater. Chem. C 2014, 2, 5280–5285.

    Article  CAS  Google Scholar 

  55. Yuan, W. J.; Liu, A. R.; Huang, L.; Li, C.; Shi, G. Q. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766–771.

    Article  CAS  Google Scholar 

  56. Ren, H.; Zhou, Y.; Wang, Y. J.; Zhu, X. Y.; Gao, C.; Guo, Y. C. Improving room-temperature trace NO2 sensing of black phosphorus nanosheets by incorporating benzyl viologen. Sens. Actuators B:Chem. 2020, 321, 128520.

    Article  CAS  Google Scholar 

  57. Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

    Article  CAS  Google Scholar 

  58. Guo, S. Q.; Yang, D.; Zhang, S.; Dong, Q.; Li, B. C.; Tran, N.; Li, Z. Y.; Xiong, Y. J.; Zaghloul, M. E. Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 2019, 29, 1900138.

    Article  Google Scholar 

  59. Ou, J. Z.; Ge, W. Y.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y. C.; Fu, Z. Q.; Chrimes, A. F.; Wlodarski, W. et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 2015, 9, 10313–10323.

    Article  CAS  Google Scholar 

  60. Xin, X.; Zhang, Y.; Guan, X. X.; Cao, J. X.; Li, W. L.; Long, X.; Tan, X. Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 9438–9447.

    Article  CAS  Google Scholar 

  61. Liang, J. R.; Lou, Q.; Wu, W. H.; Wang, K. Q.; Xuan, C. NO2 gas sensing performance of a VO2(B) ultrathin vertical nanosheet array: Experimental and DFT investigation. ACS Appl. Mater. Interfaces 2021, 13, 31968–31977.

    Article  CAS  Google Scholar 

  62. Zhang, Y. J.; Jiang, Y. D.; Duan, Z. H.; Huang, Q.; Wu, Y. W.; Liu, B. H.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Tai, H. L. Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling. Sens. Actuators B:Chem. 2021, 344, 130150.

    Article  CAS  Google Scholar 

  63. Wan, P. B.; Wen, X. M.; Sun, C. Z.; Chandran, B. K.; Zhang, H.; Sun, X. M.; Chen, X. D. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 2011, 11, 5409–5415.

    Article  Google Scholar 

  64. Yang, S.; Liu, Y. L.; Chen, W.; Jin, W.; Zhou, J.; Zhang, H.; Zakharova, G. S. High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B:Chem. 2016, 226, 478–485.

    Article  CAS  Google Scholar 

  65. Tyagi, D.; Wang, H. D.; Huang, W. C.; Hu, L. P.; Tang, Y. F.; Guo, Z. N.; Ouyang, Z. B.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), Natural Science Foundation of Jiangsu Province (No. BK20201300), Six Talent Peaks Project in Jiangsu Province (XCL-046), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (MCMS-I-0420G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors also thank Ms. Q. Zhao from the University of Electronic Science and Technology of China for helpful discussions on sensor testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Tai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Tai, G., Liu, Y. et al. Borophene gas sensor. Nano Res. 15, 2537–2544 (2022). https://doi.org/10.1007/s12274-021-3926-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3926-6

Keywords

Navigation